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SUMMARY
Spindle assembly is spatially regulated by a chromosome-derived Ran- GTP gradient. Previous work pro-
posed that Ran-GTP activates spindle assembly factors (SAFs) around chromosomes by dissociating inhib-
itory importins from SAFs. However, it is unclear whether the Ran-GTP gradient equivalently activates SAFs
that localize at distinct spindle regions. In addition, Ran’s dual functions in interphase nucleocytoplasmic
transport and mitotic spindle assembly have made it difficult to assess its mitotic roles in somatic cells.
Here, using auxin-inducible degron technology in human cells, we developed acute mitotic depletion assays
to dissect Ran’s mitotic roles systematically and separately from its interphase function. In contrast to the
prevailing model, we found that the Ran pathway is not essential for spindle assembly activities that occur
at sites spatially separated from chromosomes, including activating NuMA for spindle-pole focusing or for
targeting TPX2. On the other hand, Ran-GTP is required to localize HURP and HSET specifically at chromo-
some-proximal regions to set proper spindle length during prometaphase. We demonstrated that Ran-GTP
and importin-b coordinately promote HURP’s dynamic microtubule binding-dissociation cycle, which main-
tains HURP near chromosomes duringmetaphase. Together, we propose that the Ran pathway acts on spin-
dle assembly independently of its interphase functions in mitotic human cells but does not equivalently regu-
late all Ran-regulated SAFs. Ran-dependent spindle assembly is likely coupled with additional parallel
pathways that activate SAFs distantly located from the chromosomes.
INTRODUCTION

During cell division, a microtubule-based spindle structure is

assembled around chromosomes to efficiently capture and

segregate duplicated chromosomes into daughter cells.1,2 Spin-

dle assembly is dependent on a gradient of a guanosine triphos-

phate (GTP)-bound form of Ran (Ran-GTP), which surrounds

chromosomes in animal cells.3,4 Ran-GTP is produced by regu-

lator of chromosome condensation 1 (RCC1), a guanine nucleo-

tide exchange factor (GEF) for Ran,5 and is hydrolyzed to Ran-

guanosine diphosphate (GDP) by RanGAP1, a GTPase-acti-

vating protein for Ran.6 As RCC1 and RanGAP1 mainly localize

on chromosomes and in the cytoplasm, respectively, these

opposing enzymes create a chromosome-derived Ran-GTP

gradient after the nuclear envelope breaks down (Figure 1A). Af-

ter mitotic exit, RCC1 still binds to chromatin although RanGAP1
Current Biology 31, 115–127, Ja
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localizes to the nuclear envelop and the cytoplasm. Thus, these

enzymes generate different Ran-GTP concentrations in the nu-

cleus and cytoplasm, which drives nucleocytoplasmic transport

during interphase.4 The Ran-GTP gradient has been best char-

acterized in Xenopus egg extracts,7,8 but is also found in other

meiotic and mitotic cell types.9–11 Recent studies indicate that

Ran-GTP is essential for acentrosomal spindle assembly in fe-

male meiosis,9,12,13 but the significance of Ran-GTP in mitotic

spindle assembly has been debated.10,11,14

Similar to the mechanisms of nucleocytoplasmic transport,4

Ran-GTP binds to importin-b during mitosis, thereby releasing

inhibitory importins from spindle assembly factors (SAFs) near

chromosomes (Figure 1A).15–18 Once activated, most SAFs

interact with microtubules and spatially regulate microtubule

nucleation, dynamics, transport, and cross-linking, which in

turn creates specialized local structures of the spindle.3,4 For
nuary 11, 2021 ª 2020 The Authors. Published by Elsevier Inc. 115
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. NuMA Acts in Spindle-Pole Focusing Using Its Conserved Microtubule-Binding Domain

(A) The prevailing model of SAF inhibition and activation.

(B) Full-length NuMA and truncation fragments.

(C) Live fluorescence images of metaphase NuMA-mACF cells 24 h after treatment with Dox and IAA. Arrows indicate unfocused microtubules.

(D) Quantification of unfocused spindles for each condition in (C) from 3 independent experiments. p values were calculated using Dunnett’s multiple com-

parisons test after one-way ANOVA (F (3,6) = 33.81; p = 0.0004).

See also Figure S1. Error bars indicate mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; scale bars, 10 mm.
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instance, nuclear mitotic apparatus protein (NuMA) recognizes

the minus ends of microtubules and transports and cross-links

microtubules in cooperation with cytoplasmic dynein to focus

and maintain spindle microtubules at the poles in mammalian

cells.19–22 The targeting protein for Xklp2 (TPX2) is required

for spindle pole organization23,24 and stimulates microtubule

nucleation in a Ran- and importin-a-regulated manner.25–28

Kinesin-14 human spleen, embryo, and testes expressed

(HSET/XCTK2) cross-links both parallel and anti-parallel

microtubules near chromosomes but preferentially cross-links

parallel microtubules near the spindle poles.29–31 Hepatoma

upregulated protein (HURP) accumulates on microtubules near

chromosomes to form bundled kinetochore microtubules

(k-fibers).32 Most SAFs, including NuMA, TPX2, and HSET,

contain a nuclear localization sequence/signal (NLS),29,33,34

which is specifically recognized by importin-a (Figure 1A). On

the other hand, some SAFs, such as HURP, are directly recog-

nized by importin-b (Figure 1A).32

NuMA was first described as a Ran-importin-regulated SAF in

Xenopus egg extracts15,16 (Figure 1A) together with TPX2.17 We
116 Current Biology 31, 115–127, January 11, 2021
now know that, in mitotic human cells, NuMA localizes to the

spindle poles and the polar cell cortex, where it facilitates spin-

dle-pole focusing and astral microtubule capture/pulling,

respectively.19,20,35 Recently, Chang et al.33 solved a crystal

structure of the importin-a-NuMA-NLS complex, illustrating

that NuMA’smicrotubule-binding activities are inhibited by steric

blockage of importin-b in vitro. However, how Ran-GTP acti-

vates NuMA in cells has not been rigorously examined.

To understand the mechanisms and significance of Ran-

based regulation of SAFs, it is critical to separate Ran’s mitotic

roles from its interphase nucleocytoplasmic transport function.

To achieve this, we developed mitotic depletion assays for the

Ran pathway in human cells by combining mitotic drugs with

auxin-inducible degron (AID) technology,36 which allows us to

degrade mAID-tag fusion proteins with a half-life of 20 min. In

contrast to the prevailing model, we found that depletion of

RCC1, RanGAP1, or importin-b, even during mitosis, does not

substantially affect the localization and function of NuMA at

the spindle poles. However, we also found that Ran-GTP is

required to localize HURP and HSET near chromosomes.
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Overall, our studies indicate that the Ran pathway acts on spin-

dle assembly separately from its interphase functions but does

not equivalently regulate all Ran-regulated SAFs in mitotic hu-

man cells.

RESULTS

NuMA Focuses Spindle Microtubules Using Its C-
Terminal Conserved Microtubule-Binding Domain
NuMA has two microtubule-binding domains (MTBDs) at the

C-terminal region33,37 (Figure 1B) that are critical for spindle-

pole focusing.19 To understand which domain is required for

spindle-pole focusing, we replaced endogenous NuMA with

C-terminal truncation mutants (Figure 1B). Endogenous

NuMA was fused with an mAID-mClover-FLAG (mACF) tag20

(Figure S1A) and depleted using the AID system following doxy-

cycline (Dox) and indole-3-acetic acid (IAA) treatment.20,36 In

parallel, mCherry-tagged NuMA mutants were expressed

from the Rosa 26 locus by Dox treatment (Figures 1B, 1C,

S1B, and S1C).20 Equivalent to endogenous NuMA, mCherry-

tagged NuMA wild type (WT) accumulated in interphase nuclei

(Figure S1C) and at mitotic spindle poles (Figure 1C) and was

able to rescue pole-focusing defects caused by NuMA deple-

tion (Figures 1C and 1D).20 NuMA-DNLS mutants were unable

to localize at nuclei in interphase (Figure S1C), but were able

to accumulate at spindle poles to rescue pole-focusing defects

(Figures 1C and 1D). As expected, NuMA DC-ter mutants,

which lack both MTBDs, diffused into the cytoplasm during

metaphase (Figure 1C) and were unable to rescue the spin-

dle-pole focusing defects (Figures 1C and 1D).19 Similarly,

NuMA Dex24 mutants, which lack the NLS and part of

MTBD1, were unable to fully rescue focusing defects, despite

localizing around the spindle poles (Figures 1C and 1D).

Although this localization appears to be slightly reduced at

the poles (Figure 1C), the fluorescence intensities were not

significantly different between Dex24 and DNLS mutants at

either mitotic poles or interphase cytoplasm (Figures S1D and

S1E). In contrast, NuMA D(NLS+MTBD2) mutants, which accu-

mulate on mitotic spindle poles and interphase microtubules

around centrosomes, were able to rescue the focusing defects

(Figures 1C, 1D, and S1C). These results indicate that NuMA’s

MTBD1, containing a well-conserved NuMA-Lin5-Mud (NLM)

motif (Figure S1F),38,39 is essential for spindle-pole focusing

in human cells, similar to mouse fibroblasts.22

NuMA Localizes at the Spindle Poles Independently of
RCC1
NuMA’s MTBD1 is adjacent to the NLS, which is recognized

by importin-a (Figures 1A, 1B, and S1F).33 A recent in vitro

study demonstrated that NuMA’s microtubule-binding activity

is sterically inhibited by the importin-a/b complex, but Ran-

GTP releases the importin complex, allowing NuMA to interact

with microtubules (Figure 1A).33 To test this model in cells, we

depleted RCC1 (RanGEF) by integrating an mAID-mClover

(mAC) tag into the gene (Figures S1A and S2A; hereafter, all

PCR validation results of the established cell lines are summa-

rized in Figure S7).36 Surprisingly, RCC1 depletion did not

substantially affect NuMA’s spindle-pole localization (Fig-

ure 2A). Although NuMA intensities at the spindle poles were
slightly reduced in RCC1-depleted cells (Figure 2B), the rela-

tive intensities of NuMA on microtubules slightly increased

(Figure 2C) as a result of the reduction of microtubule inten-

sities following RCC1 depletion (Figures 2A and S2B). RCC1

depletion also shortened the metaphase spindle (Figures 2A

and 2D) and delayed mitotic progression (Figures S2C–S2E),

but spindle poles were focused normally and the cells eventu-

ally exited mitosis, as reported in RCC1-depleted chicken

DT40 cells.14 These results indicate that, although Ran-GTP

is required for some aspects of spindle assembly, it is not

required to localize and activate NuMA at the spindle poles

in human cells.

NuMA Participates in Spindle-Pole Focusing
Independently of RCC1
To further analyze the functions of NuMA in RCC1-depleted

cells, we next co-depleted RCC1 and NuMA. Following treat-

ment with Dox and IAA, both RCC1-mAC and NuMA-mAID-

mCherry were depleted (Figure 2E), and unfocused spindles

were frequently observed (Figures 2E and 2F). In addition,

some spindles were completely collapsed and did not form a

bi-polar spindle structure (Figures 2E, bottom, and 2F). Unex-

pectedly, co-depletion of RCC1 and NuMA further diminished

the intensities of tubulin (Figures 2G and S2F). These results sug-

gest that NuMA is functional in the absence of Ran-GTP to focus

spindle poles and stabilize spindle microtubules.

We note that the frequency of an unfocused spindle in RCC1

and NuMA co-depleted cells (Figure 2F; ~20%) is lower than

that of NuMA single-depleted cells (Figure 1D; ~74%). Themilder

phenotype might reflect smaller pole-splitting forces exerted in

the co-depleted cells, as RCC1 depletion results in shorter meta-

phase spindle formation (Figure 2D) with reduced microtubules

(Figure S2B).

RanGAP1 and Importin-b Degradation Do Not Affect
NuMA Localization and Function at Spindle Poles
Although RCC1 is dispensable for NuMA localization and func-

tion, depletion of RanGAP1 or importin-bmay cause overactiva-

tion of NuMA (Figure 1A), resulting in spindle assembly defects.

To test this, we depleted either RanGAP1 or importin-b (Figures

2H–2K and S2G–S2J). RanGAP1 depletion did not affect Nu-

MA’s spindle-pole localization (Figures 2H and 2I), spindle

length, or mitotic duration (Figure S2H). Importin-b depletion

also did not affect NuMA’s localization at spindle poles (Figures

2J and 2K), but it did result in short spindles and mitotic delay

(Figure S2J).

To further test the contribution of the Ran-importin pathway to

NuMA activation, we next expressed importin-a DIBB mutants

that lack the importin-b-binding (IBB) domain (Figure S2K). Im-

portin-a DIBB mutants are insensitive to Ran-GTP due to the

lack of an IBB domain but are still able to interact with NuMA

and partially inhibit NuMA’s microtubule-binding activity in vitro

(Figure S2K).33 However, importin-a DIBB diffused into cyto-

plasm similarly to importin-a WT, and neither affected NuMA’s

spindle-pole localization or co-localized with NuMA at the spin-

dle poles in our experimental conditions (Figures S2L and S2M).

Together, these results indicate that the traditional Ran pathway

(Figure 1A) is dispensable for NuMA regulation and activation in

cultured human cells.
Current Biology 31, 115–127, January 11, 2021 117



A B C D

E
F G

H I J K

Figure 2. NuMA Functions in Spindle-Pole Focusing Independently of RCC1

(A) Live fluorescence images of metaphase RCC1-mAC cells 24 h after Dox and IAA treatment.

(B) Intensity of NuMA-mCh at spindle poles in controls (318 ± 90.86) and RCC1-depleted cells (279.6 ± 92.39).

(C) Relative intensity of NuMA-mCh/SiR-tubulin at spindle poles in controls (0.22 ± 0.14) and RCC1-depleted cells (0.33 ± 0.22).

(D) Ratio of spindle length and cell diameter in controls and RCC1-depleted cells.

(E) Live images of RCC1-mAC and NuMA-mAID-mCh double knockin cells 24 h after Dox and IAA treatment. Projected images from 5 z sections are shown. The

arrow indicates unfocused microtubules.

(F) Quantification of cells in (E) from >4 independent experiments. p values were calculated using Dunnett’s multiple comparisons test after one-way ANOVA

(F (3,14) = 36.40; p = 0.0001).

(G) Intensity of SiR-tubulin at spindle poles in controls (719.6 ± 242.7) and RCC1 and NuMA co-depleted cells (371.1 ± 209.2).

(H) Live images of metaphase RanGAP1-mAC cells 24 h after Dox and IAA treatment.

(I) Quantification of NuMA-mCh signals at spindle poles in controls (349.6 ± 108.3) and RanGAP1-depleted cells (318.6 ± 107.7).

(J) Live images of metaphase importin-b-mAC cells 24 h after Dox and IAA treatment. Asterisks indicate RCC1-non-depleted cells (see STAR Methods).

(K) Quantification of NuMA-mCh signals at spindle poles in controls (511.2 ± 223) and importin-b-depleted cells (414.8 ± 199.5) from >3 independent experiments.

See also Figure S2. Error bars indicate mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; scale bars, 10 mm.
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Mitotic Degradation of RCC1 Does Not Affect
Localization and Function of NuMA at Spindle Poles
In the above experiments, RCC1, RanGAP1, or importin-b were

depleted in asynchronous culture. However, given Ran’s func-

tion in interphase nuclear-cytoplasmic transport, unknown sec-

ondary effects may have induced their mitotic phenotypes. In

addition, because NuMA is maintained in the nucleus following

RCC1 depletion in interphase (Figure S2E; t = �0:10), the
118 Current Biology 31, 115–127, January 11, 2021
majority of NuMA may already have been liberated from impor-

tins by pre-existing RCC1 and exist as an active form in the nu-

cleus, thereby producing no aberrant phenotypes duringmitosis.

To exclude these possibilities, we next depleted RCC1 in noco-

dazole-arrested cells and analyzed the behavior of NuMA

following nocodazole washout (Figure 3A).

In control cells, NuMA diffused into the cytoplasm during no-

codazole arrest (Figure 3B; t = �90), but rapidly accumulated
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Figure 3. RCC1 Depletion during Prometaphase Does Not Affect NuMA Localization and Function at the Spindle Poles

(A) Diagram of prometaphase depletion assay (see STAR Methods).

(B and C) Live fluorescence images in RCC1-positive control (B) and RCC1-negative cells (C) treated with nocodazole and IAA, as described in (A). Arrows and

asterisks indicate RCC1-depleted and non-depleted cells, respectively.

(D) Intensity of RCC1 on chromosomes at t = 0 in controls (585.2 ± 311.8; n = 27) and RCC1-depleted cells (7.6 ± 10.3; n = 25).

(E) Intensity of NuMA at metaphase spindle poles in controls (340.6 ± 111.6; n = 28) and RCC1-depleted cells (336.0 ± 86.5; n = 25). Welch’s t test gave a p of

0.9542.

(F) Ratio of spindle length and cell diameter in control (0.57 ± 0.05; n = 35) and RCC1-depleted (0.50 ± 0.06; n = 30) cells from >3 independent experiments.

See also Figure S3 and Videos S1 and S2. Error bars indicate mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; scale bars, 10 mm.
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near chromosome masses following nocodazole washout (Fig-

ure 3B; t = 10; Video S1). Unexpectedly, NuMA also displayed

punctate signals throughout cells (Figures 3B, t = 10, and S3A),

some of which co-localized with SiR-tubulin (Figure S3B). These

NuMA dots disappeared during spindle assembly, and the ma-

jority of NuMA localized at the poles of metaphase spindles

within 60 min (Figure 3B; t = 60). Following mitotic exit, NuMA

was localized in the nucleus (Figure 3B; t = 85).

Importantly, even if RCC1was depleted during nocodazole ar-

rest, NuMA accumulated as usual at focused spindle poles.

RCC1-mAC signals were initially detectable (Figure 3C; t =

�90, arrow), but were reduced to undetectable levels after addi-

tion of IAA (Figures 3C, t = 0, and 3D). After nocodazole-washout,

NuMA accumulated near chromosome masses (Figure 3C; t =

10) and localized to focused spindle poles (Figure 3C; t = 55;

Video S2), as observed in control cells (Figure 3E). During the
process, the number of NuMA dots appeared to be reduced (Fig-

ures 3C, t = 10, and S3C), but the number of SiR-tubulin dots on

chromosomes, which might represent non-centrosomal micro-

tubules nucleated from chromosomes, was not significantly

affected by RCC1 depletion (Figure S3D). RCC1-depleted cells

entered anaphase with timing similar to that of control cells (Fig-

ure S3E), but NuMA was absent from the nucleus after mitotic

exit (Figure 3C; t = 80).

As observedwhenRCC1was depleted in asynchronous culture

(Figure 2D), the metaphase spindle became shorter when RCC1

was depleted during nocodazole arrest (Figure 3F). In addition,

metaphase spindle poles were well focused, and unfocused

NuMA signals were never observed in both control (n = 28) and

RCC1-depleted (n = 25) cells. The frequency ofmis-oriented spin-

dles slightly increased in RCC1-depleted cells (Figure S3F), but

the difference was not statistically significant. Taken together,
Current Biology 31, 115–127, January 11, 2021 119
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Figure 4. RCC1 Regulates Chromosome-Proximal Localization of HURP and HSET

(A, C, E, and G) Live fluorescent images of metaphase RCC1-mAC cells 24 h after Dox and IAA treatment.

(B) Intensity of TPX2-mCh at spindle poles in controls (212.7 ± 127.3) and RCC1-depleted cells (203.2 ± 119.1).

(D) Left: diagram showing the central and polar regions of the spindle. Right: relative intensity of mCh-HSET against SiR-tubulin at central regions in controls

(5.68 ± 1.03) and RCC1-depleted cells (4.16 ± 1.34) and at polar regions in controls (2.48 ± 0.61) and RCC1-depleted cells (2.55 ± 0.95) is shown. Welch’s t test

gave a p of 0.67.

(F and H) Line scans showing fluorescence intensities of SiR-tubulin and HURP-mCh or importin-b-mCh on k-fibers indicated as dotted lines in (E) and (G),

respectively.

(I) List summarizing localization of SAFs.

See also Figure S4. Error bars indicate mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; scale bars, 10 mm.
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these results indicate that RCC1 participates on some level in

spindle assembly independently of its interphase functions, but

is dispensable for NuMA localization and function at spindle poles.

RCC1 Regulates Chromosome-Proximal Localization of
HURP and HSET
To elucidate Ran’s spindle assembly function, we set out to iden-

tify SAFs regulated by Ran-GTP, initially focusing on the localiza-

tion of 3major SAFs: TPX2; HSET; and HURP. TPX2 co-localized
120 Current Biology 31, 115–127, January 11, 2021
with SiR-tubulin signals in metaphase (Figure 4A, top), but its

localization was virtually unaffected in RCC1-depleted cells

(Figures 4A, bottom, and 4B). In contrast, HSET localized

everywhere along spindle microtubules (Figure 4C, top),31

and following RCC1 depletion, its spindle localization was

selectively reduced near chromosomes (Figures 4C, bottom,

4D, and S4A). Remarkably, HURP localization was affected by

RCC1 depletion: HURP accumulated at kinetochore fibers

(k-fibers) near chromosomes in all analyzed cells (n = 40), but
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Figure 5. HURP, but Not Importin-b, Is Required to Stabilize K-Fibers

(A) Live fluorescence images of metaphase HURP-mACF (mAID-mClover-FLAG) cells 24 h after Dox and IAA treatment.

(B) Line scans showing fluorescence intensities of SiR-tubulin and importin-b-mCh on k-fibers indicated as dotted lines in (A).

(C) Ratio of spindle length and cell diameter in control (0.64 ± 0.05) and HURP-depleted (0.52 ± 0.06) cells.

(D) Fluorescence images of HURP-mACF, TUB, and DNA (Hoechst 33342) in metaphase fixed cells treated with ice-cold medium for 20 min. Two cells with or

without HURP signals were analyzed in the same field.

(E) Live images of metaphase importin-b-mAC cells 24 h after Dox and IAA treatment.

(F) Relative intensities of HURP-mCh against SiR-tubulin at the poles in control (0.5217 ± 0.5171) and importin-b-depleted (2.802 ± 2.574) cells.

(G) Fluorescence images of fixedmetaphase cells treated with ice-cold medium for 20min. Five z section images were obtained using 0.5-mmspacing; maximum

intensity projection images are shown in (D) and (G).

(H and J) Live images of metaphase RanGAP1-mAC cells 24 h after Dox and IAA treatment.

(I) Relative intensities of HURP-mCh against SiR-tubulin at the poles in control (0.04708 ± 0.02666) and RanGAP1-depleted (0.1362 ± 0.0592) cells.

(K) Relative intensities of importin-b-mCh against SiR-tubulin at the poles in control (0.02695 ± 0.002289) and RanGAP1-depleted (0.05852 ± 0.03579) cells.

See also Figure S5. Error bars indicate mean ± SD; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; scale bars, 10 mm.
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localized weakly on spindle microtubules in all RCC1-depleted

cells observed (n = 43; Figures 4E and 4F).

As we found that endogenous importin-b also accumulates at

k-fibers in both living (Figures 2J and S4B) and fixed cells (Fig-

ure S4C), we next analyzed importin-b in RCC1-depleted cells.

In 84% of control cells (n = 45), importin-b signals were detected

in both k-fibers and cytoplasm (Figure 4G, top). However, the k-

fiber signals were not detectable in 88% of RCC1-depleted cells

(n = 43; Figure 4G, bottom). Although microtubule density is

reduced to 60%–70% by RCC1 depletion (Figure S2B), the

k-fiber signals of importin-b should still be detected, if they exist,

as cytoplasmic intensities of importin-b were not significantly

changed by RCC1 depletion (Figures 4H and S4D).

Together, these results suggest that the Ran-GTP gradient

activates at least two established SAFs, HSET and HURP,
preferentially near chromosomes, but does not affect NuMA

and TPX2 (Figure 4I).

HURP, but Not Importin-b, Is Required to Stabilize K-
Fibers
Importin-b acts as an inhibitor of HURP (Figure 1A).32 However,

importin-b co-localizes with HURP at k-fibers (Figure S4C) and

behaves similarly to HURP downstream of Ran-GTP (Figures

4E and 4G). To understand the relationship between HURP

and importin-b, we next sought to deplete endogenous HURP

using AID (Figures 5A and S5A). Importin-bwas detected on k-fi-

bers in 81% of control cells (n = 49; Figures 5A and 5B), but not

observed in any HURP-depleted cells analyzed (n = 43; Figures

5A and 5B). HURP depletion also reduced mitotic spindle length

(Figure 5C), but it did not significantly change microtubule
Current Biology 31, 115–127, January 11, 2021 121
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density at the poles (Figure S5B). Consistent with a previous

study,32 HURP localized to cold-stable microtubules (Figure 5D,

top), which were subsequently disrupted by HURP depletion

(Figure 4D, bottom).

We next depleted importin-b (Figure 5E). Importin-b depletion

caused a remarkable re-localization of HURP from k-fibers to

spindle microtubules (Figures 5E and 5F). Although k-fiber

localization of HURP was unclear in importin-b-depleted cells

due to the relatively strong accumulation of HURP on spindle

microtubules around spindle poles (Figure 5E, bottom), HURP

was clearly detected on cold-stable k-fibers in importin-

b-depleted cells (Figure 5G, bottom). These results suggest

that HURP acts in k-fiber stabilization independently of

importin-b.
HURP and Importin-b Localize throughout the Spindle in
RanGAP1-Depleted Cells
To better understand the mechanisms of Ran-based spatial

regulation of HURP and importin-b, we next analyzed the

behavior of HURP and importin-b in RanGAP1-depleted cells,

in which Ran-GTP should exist evenly throughout the cell. Inter-

estingly, both HURP and importin-b localized throughout the

spindle with increased intensities in RanGAP1-depleted cells

(Figures 5H–5K). These results suggest that HURP and impor-

tin-b act together and interact with microtubules preferentially

in the presence of Ran-GTP.
Fast Turnover of Chromosome-Proximal HURP in the
Presence of Importin-b
Based on our results, we developed a local cycling model for

the activation and polarization of HURP (Figure S5C). In this

model, importin-b inhibits HURP globally, including at k-fibers,

by masking HURP’s 2nd microtubule-binding domain

(MTBD2).40 The resulting HURP-importin-b complex binds

weakly to microtubules through HURP’s MTBD1,40 but the

Ran-GTP gradient locally releases importin-b from HURP, re-

sulting in the full activation of HURP near chromosomes (Fig-

ure S5C). To test this model, we performed fluorescence recov-

ery after photobleaching (FRAP) for HURP and analyzed its

dynamics on spindle microtubules in the presence and absence

of importin-b. In control cells, HURP quickly recovered at k-fi-

bers near chromosomes after bleaching (Figures 6A, top, 6B,

left, black, and S6A; t1/2 = 20.5 s). In contrast, HURP’s recovery

was hardly seen on the spindle in importin-b-depleted cells (Fig-

ures 6A, bottom, 6B, red, and S6B), suggesting a stable binding

to spindle microtubules.
HURP Is Dynamically Maintained at K-Fibers during
Metaphase
To confirm the dynamic regulation of HURP by importin-b and

Ran-GTP, we next sought to deplete importin-b during meta-

phase (Figure 6C).41 Following treatment with the antigen-pre-

senting cell (APC)/C inhibitors, apcin and proTAME, cells

were arrested at metaphase, at which point both importin-b

and HURP accumulated at k-fibers near chromosomes (Fig-

ure 6D; t = 0). Importantly, importin-b-mAC signals diminished

to undetectable levels 60–90 min after the addition of IAA (Fig-

ure 6D, arrows), and HURP relocated from k-fibers to spindle
122 Current Biology 31, 115–127, January 11, 2021
microtubules in response to the reduction of importin-b (Figures

6D and 6E).

To confirm these results, we next acutely depleted RCC1 in

metaphase-arrested cells. As with importin-b depletion, HURP

dissociated from k-fibers and localized weakly on the spindle

in response to RCC1 depletion (Figures 7A and 7B; Video S3).

However, in contrast to the prometaphase depletion assay (Fig-

ure 3F), spindle length appeared to be normal when RCC1 was

depleted in the metaphase-arrested condition (Figure 7C). In

addition, SiR-tubulin intensities at the poles did not significantly

changewhenRCC1was depleted duringmetaphase (Figure 7D).

To compare these phenotypes, we lastly depleted HURP via

auxin, which significantly reduced HURP signals 90–120 min

following treatment (Figures 7E and 7F). In contrast to RCC1

depletion, the metaphase spindle became shorter in response

to the depletion of HURP (Figures 7E and 7G).

Taken together, these results indicate that HURP is dynami-

cally maintained at k-fibers near chromosomes by the Ran-im-

portin pathway, even in metaphase. In addition, HURP is

required to maintain spindle length during metaphase (Fig-

ure 7G), whereas Ran-GTP appears to contribute to spindle

length control preferentially during prometaphase (Figures 3F

and 7C).

DISCUSSION

NuMA Is Liberated from Importins Independently of Ran-
GTP for Spindle-Pole Focusing
In contrast to the prevailing model (Figure 1A), we demonstrated

that the Ran-Importin pathway is dispensable for localization and

function of NuMA at spindle poles in human HCT116 cells (Fig-

ures 2 and 3). This is consistent with the recent observation

that NuMA is less sensitive to Ran-GTP levels than to HSET/

XCTK2.30 Although we do not exclude the possibility that Ran-

GTP liberates NuMA from importin-a/b complexes near chromo-

somes, we favor the idea that parallel pathways exist to activate

NuMA in mitotic human cells (Figure 7H). In fact, recent studies

indicate that importin-a/b-binding TPX2 can be activated not

only by Ran-GTP but also by Golgi- or palmitoylation-dependent

sequestration of importin-a.42,43 In addition, phosphorylation of

TPX2’s NLS also acts to release importins from TPX2.44 Similar

mechanisms might exist for NuMA around centrosomes

(Figure 7H).

Although TPX2-NLS is well conserved in vertebrates, the NLS

of NuMA is not well conserved in fish (Figure S1F). Furthermore,

the NLS is absent in other NuMA-like proteins in lower eukary-

otes.38,45,46 Future research should be undertaken to under-

stand how the NuMA-importin interaction is regulated in a

Ran-independent manner and why NLS-dependent regulation

of NuMA was acquired in higher animals.

The Ran-Importin Pathway Locally Activates HURP by
Promoting Its Microtubule Binding-Dissociation Cycle
Near Chromosomes
In contrast to NuMA, we demonstrated that HURP is preferen-

tially regulated by the Ran-importin pathway in mitotic human

cells (Figures 4E, 5H, and 5J). Although HURP has been identi-

fied previously as a downstream target of Ran-GTP,32 we found

that HURP also co-localizes with importin-b on k-fibers near
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Figure 6. HURP Dynamically Accumulates on Metaphase K-Fibers in an Importin-b-Dependent Manner

(A) Live fluorescence images of HURP-SNAP visualized with TMR-star and SiR-tubulin in control and importin-b-depleted cells. Fluorescence signals were

bleached in the boxed regions at t = 0, and fluorescence recovery was monitored for 120 s.

(B) FRAP plots of means with SDs from 7 samples.

(C) Diagram of metaphase depletion assay (see STAR Methods).

(D) Live images of DNA, tubulin, and indicated proteins. IAA was added at t = 0. Arrows indicate a cell showing a reduction of importin-b during metaphase.

(E) Enlarged images from (D) and line scans of HURP and SiR-tubulin intensities on spindle microtubules indicated as dotted lines in the left images, showing a re-

localization of HURP from k-fibers (t = 0) to the spindle (t = 90).

See also Figure S6. Error bars indicate mean ± SD; scale bars, 10 mm.
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Figure 7. Models of Local Activation Mechanisms for HURP and NuMA in Mitosis

(A) Live fluorescence images of DNA, tubulin, and indicated proteins. IAA was added at t = 0.

(B) Enlarged images of indicated regions in (A) and line scans of indicated microtubules, showing a reduction of HURP-mCh from k-fibers in response to RCC1

depletion.

(C) Change in spindle length in control (�0.36 ± 0.30) and RCC1-depleted (�0.47 ± 0.34) cells.

(D) Change in SiR-tubulin intensities in control (74.2 ± 193.4) and RCC1-depleted (2.269 ± 148.1) cells. Welch’s t test gave a p of 0.505 in (C) and 0.275 in (D).

(E) Live images of indicated proteins. IAA was added at t = 0.

(F) Enlarged images of indicated regions in (E) and line scans of indicated microtubules, showing a reduction of HURP-mACF.

(G) Change in SiR-tubulin intensities in control (�0.60 ± 0.54) and RCC1-depleted (�1.36 ± 0.46) cells from >3 independent experiments.

(legend continued on next page)
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chromosomes (Figures S4C, 5A, and 5E) and stabilizes k-fibers

independently of importin-b (Figures 5D and 5G). Based on these

and other results (Figures 4E, 5E, 5H, 6A, 6D, and 7A), we pro-

pose a local cycling model for the establishment and mainte-

nance of HURP’s polarized localization to spindle microtubules

(Figures 7I and S5C). This model nicely explains the reason

why HURP, but not importin-b, stabilizes microtubules and gen-

erates stable k-fibers near chromosomes (Figures 5D and

5G).This dynamic regulation is similar to that of HSET/XCTK247

and would be suitable for bundling short microtubules around

kinetochores during prometaphase48 and for coupling HURP’s

polarized localization with microtubule flux on the metaphase

spindle.

RCC1 Promotes Proper Spindle Assembly in Human
Mitotic Cells
By depleting RCC1 during prometaphase, we demonstrated that

RCC1 participates in proper spindle assembly independently of

its interphase function in human mitotic cells (Figure 3F). Short

spindles caused by RCC1 depletion could be explained by mul-

tiple defects, including the lack of HURP-based k-fiber formation

(Figures 5C and 5D) and HSET-dependent spindle elongation

(Figure 4C).31 Although HURP depletion shortened the meta-

phase spindle (Figure 7E), RCC1 depletion in metaphase did

not affect spindle length (Figure 7A). The HURP-importin-b com-

plex may therefore play a role in the maintenance of the estab-

lished spindle structure in RCC1-depleted cells.

In addition to spindle assembly, Ran-GTP also contributes to

microtubule nucleation during mitosis.28 Microtubule intensities

were reduced when RCC1 was depleted before mitosis (Figures

2A and S2B), but not during metaphase (Figures 7A and 7D).

Once microtubule nucleation pathways are activated in mitosis,

additional Ran-based activation may not be required. Alterna-

tively, the requirement of Ran for microtubule nucleation may

be different between cell types. Unexpectedly, we found that Nu-

MA’s punctate signals appear transiently in a Ran-GTP-depen-

dent manner (Figures 3B, 3C, and S3C). The significance of the

NuMA puncta is currently unclear, but these may be related to

minus-end stabilization of nucleated microtubules.

A New Toolkit and Mitosis-Specific Protein-Depletion
Assays to Dissect the Mitotic Roles of the Ran-Importin
Pathway
Mitotic inactivation is critical to precisely analyze mitotic func-

tions of the Ran pathway. Previously, tsBN2, a temperature-

sensitive RCC1 mutant hamster cell line,49,50 and a small-mole-

cule inhibitor, importazole,51 have been developed to acutely

inhibit functions of RCC1 and importin-b, respectively. Here,

we established many human AID-cell lines (Table S1)36 and

succeeded in depleting RCC1 specifically in prometaphase

(Figures 3A–3C) or metaphase (Figures 7A and 7E). As these

AID cell lines and mitotic depletion assays are applicable to
(H) Models of the traditional Ran pathway (i) and Ran-independent parallel pathw

chromosomes.

(I) A local cycling model of HURP on k-fibers. HURP strongly interacts with micr

binding affinity by masking one of HURP’s MTBDs (2). However, in the vicinity

activation of HURP (3).

See also Video S3. Error bars indicate mean ± SD; *p < 0.05, **p < 0.01, ***p < 0
other Ran-regulated proteins4,50,52 and other multi-functional

proteins, such as dynein and NuMA,20,36 they can be used to

further advance our understanding of the mechanisms and roles

of spindle assembly, maintenance, and positioning in animal

cells.
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11. Hasegawa, K., Ryu, S.J., and Kaláb, P. (2013). Chromosomal gain pro-

motes formation of a steep RanGTP gradient that drives mitosis in aneu-

ploid cells. J. Cell Biol. 200, 151–161.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals

SiR-tubulin Spirochrome Cat# SC002

SiR-DNA Spirochrome Cat# SC007

SiR700-tubulin Spirochrome Cat# SC014

SNAP Cell 647-SiR New England BioLabs Cat# S9102S

SNAP Cell TMR-star New England BioLabs Cat# S9105S

Hoechst 33342 Sigma-Aldrich Cat# B2261

Nocodazole Sigma-Aldrich Cat# M1404

MG132 Sigma-Aldrich Cat# C2211

RO-3306 Sigma-Aldrich Cat# SML0569

Apcin Boston Biochem Cat# I-444

proTAME Boston Biochem Cat# I-440

Puromycin dihydrochloride Wako Pure Chemical Industries Cat# 160-23151

G-418 solution Roche Cat# 04727894001

Hygromycin B Wako Pure Chemical Industries Cat# 084-07681

Blasticidin S hydrochloride Funakoshi Biotech Cat# KK-400

Doxycycline hyclate Sigma-Aldrich Cat # D9891

3-Indoleacetic acid (IAA) Wako Pure Chemical Industries Cat # 098-00181

DirectPCR� (cell) Viagen Biotech Cat #302-C

Antibodies

Anti-a-tubulin (clone DM1A) Sigma-Aldrich Cat# T9026; RRID:AB_477593

Rabbit polyclonal anti-NuMA Abcam Cat# ab36999; RRID:AB_776885

Rabbit polyclonal anti-RCC1 Cell Signaling Technology Cat# 5134

Mouse monoclonal anti-RanGAP1 Santa Cruz Biotechnology Cat# sc-25630

Mouse anti-importin-b GeneTex Cat# GTX22811

Rabbit anti-importin-a Novus biologicals Cat# NBP1-31098

Anti-HURP Nigg lab N/A

Sheep anti-mouse IgG-HRP GE Healthcare Cat# NA931

Donkey anti-rabbit IgG-HRP GE Healthcare Cat# NA934

Software and Algorithms

Photoshop CS5, version 12.0 Adobe Systems https://www.adobe.com

Fiji 53 https://fiji.sc/

Metamorph Molecular Devices https://www.moleculardevices.com

GraphPad Prism 6, version 6.0c GraphPad Software https://www.graphpad.com
Excel Microsoft https://www.microsoft.com/microsoft-365
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Tomomi

Kiyomitsu (tomomi.kiyomitsu@oist.jp).

Materials Availability
Plasmids generated in this study will be deposited to Addgene.

Data and Code Availability
This study did not generate/analyze any datasets.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Established human tissue culture cell lines, and sequence information about guide RNA and PCR primers used in this study are

described in Tables S1–S3, respectively.

METHOD DETAILS

Plasmid Construction
Plasmids for CRISPR/Cas9-mediated genome editing and auxin-inducible degron were constructed according to protocols of Nat-

sume et al.36 andOkumura et al.20 To construct donor plasmids containing homology arms for RCC1 (~500-bp homology arms), Ran-

GAP1 (~500-bp), importin-b (~500-bp), HURP (~200-bp), TPX2 (~200-bp), and HSET (~200-bp), gene synthesis services from Euro-

fins Genomics K.K. (Tokyo, Japan) or Genewiz (South Plainsfield, NJ) were used. Plasmids and sgRNA sequences used in this study

are listed in Tables S1 and S2, and will be deposited in Addgene.

Cell Culture, Cell Line Generation, and Antibodies
HCT116 cells were cultured as described previously.20 Knock-in cell lines were generated according to procedures described in

Okumura et al.20 To activate auxin-inducible degradation, cells were treated with 2 mg/mL Dox and 500 mM indoleacetic acid (IAA)

for 20–24 hr. Cells with undetectable signals for mAID-fusion proteins were analyzed. In the AID system, the target proteins are

not degraded in a small population of the cells even in the presence of Dox and IAA, possibly due to the heterogenous induction

of OsTIR1. We took advantages of this to compare two neighboring cells with or without target proteins in the same field in Figures

S2F, S3A, 5D, and 5G.

Flip-In T-REx 293 cells were used in Figures S2L and S2M to express mCherry-tagged importin-a constructs. Cell lines were

created according to procedures described in Kiyomitsu et al.54 To induce transgenes, cells were incubated with 1 mg/mL tetracy-

cline (MP Biomedicals). Cell lines and primers used in this study are listed in Tables S1 and S3, respectively.

Cell concentrations were determined using the BIO-RAD TC20 Automated Cell Counter (standard protocol). Cells were diluted to a

final concentration of 100,000 cells/ml in medium and transferred to 6-well plates for subsequent counting at 24, 48 and 72 hr. Cells

were cultured in 4 independent wells and counted twice from each well using the TC20 cell counter.

Antibodies against tubulin (DM1A, Sigma-Aldrich, 1:2,000), NuMA (Abcam, 1:1,000), RCC1 (Cell Signaling Technology, D15H6,

Rabbit mAb, 1:100), RanGAP1 (Santa Cruz Biotechnology, H-180, 1:200), importin-b (GeneTex, 3E9 Mouse mAb, 1:100), and

HURP (E. Nigg laboratory, 1:200) were used for western blotting. For RCC1 immunoblots, membranes were incubated with anti-

RCC1 antibody overnight at 4�C.

Microscope System
Imaging was performed using spinning-disc confocal microscopy with a 60 3 1.40 numerical aperture objective lens (Plan Apo l,

Nikon, Tokyo, Japan). A CSU-W1 confocal unit (Yokogawa Electric Corporation, Tokyo, Japan) with five lasers (405, 488, 561,

640, and 685 nm, Coherent, Santa Clara, CA) and an ORCA-Flash 4.0 digital CMOS camera (Hamamatsu Photonics, Hamamatsu

City, Japan) were attached to an ECLIPSE Ti-E inverted microscope (Nikon) with a perfect focus system. DNA images in Figures

S2D and S2E or S3A were obtained using a SOLA LED light engine (Lumencor, Beaverton, OR).

Immunofluorescence and Live Cell Imaging
For immunofluorescence in Figure S1K, HURP-mACF cells were fixed with PBS containing 3% paraformaldehyde and 2% sucrose

for 10 min at room temperature. Fixed cells were permeabilized with 0.5% Triton X-100 for 5 min on ice, and pretreated with PBS

containing 1%BSA for 10min at room temperature after washing with PBS. Importin-bwas visualized using anti-importin-b antibody

(1:500). Images ofmultiple z sectionswere acquired by spinning-disc confocal microscopy using 0.5-mmspacing and camera binning

2. Maximally projected images from 3 z sections are shown.

For live cell imaging, cells were cultured on glass-bottomed dishes (CELLview, #627860 or #627870, Greiner Bio-One, Kremsmün-

ster, Austria) and maintained in a stage-top incubator (Tokai Hit, Fujinomiya, Japan) to maintain the same conditions used for cell

culture (37�C and 5% CO2). In most cases, three to five z section images using 0.5-mm spacing were acquired and single z section

images are shown, unless otherwise specified.Microtubules were stainedwith 50 nMSiR-tubulin or SiR700-tubulin (Spirochrome) for

> 1 hr prior to image acquisition. DNA was stained with 50 ng/mL Hoechst� 33342 (Sigma-Aldrich) or 20 nM SiR-DNA (Spirochrome)

for > 1 hr before observation. To visualize SNAP-tagged HURP, cells were incubated with 0.1 mM TMR-Star (New England BioLabs)

for > 2 hr, and TMR-Star were removed before observation. To optimize image brightness, the same linear adjustments were applied

using Fiji and Photoshop.

Prometaphase Depletion Assay and Nocodazole Washout
To degrade mAID-tagged proteins during nocodazole arrest, cells were treated with 2 mg/mL Dox and 3.3 mM nocodazole at the

indicated times (Figure 3A). Five hours after addition of nocodazole, cell culture dishes were moved to the stage of a microscope

equipped with a peristaltic pump (SMP-21S, EYELA, Tokyo Rikakikai). Two z section images were acquired using 2-mm

spacing at three different (X.Y) positions and at 5-min intervals, with 500 mM IAA added during the first interval. After 90 min, the
Current Biology 31, 115–127.e1–e3, January 11, 2021 e2
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nocodazole-containing medium was completely replaced with fresh medium using the peristaltic pump at a velocity of 20 s/mL for

15min. Images were acquired for a further 2 hr andmaximum intensity projection images are shown in Figures 3B and 3C. To analyze

spindle orientation in Figure S3F, we took five z section images using 2-mm spacing. When both spindle poles are included within

three z section images, we judged the spindle as having parallel orientation. In Figure S3D, as the largest SiR-tubulin signal in the

center of the cell represents centrosomal microtubules, we defined other SiR-tubulin dots on chromosomes as chromosomal micro-

tubule dots and counted the number in the RCC1 positive and negative cells.

Metaphase Depletion Assay
To degrade mAID-tagged proteins in metaphase-arrested cells, cells were treated with 50 mM Apcin (I-444, Boston Biochem) and

20 mM proTAME (I-440, Boston Biochem) at the indicated times (Figure 6C). Three z section images were acquired using 1-mm

spacing at six different (X,Y) positions and at 5-min intervals, with 500 mM IAA added during the first interval. Maximum intensity pro-

jection images are shown in Figures 6D, 7A, and 7E.

Cold Treatment Assay
To increase the number of cells in metaphase, cells were treated with 20 mMMG132 (C2211, Sigma-Aldrich) for 90 min. To visualize

SNAP-taggedHURP, cells were incubated with 0.1 mMTMR-Star (S9105S, New England BioLabs) for at least 30min. Before fixation,

cells were incubated in ice-cold medium for 20 min32 to depolymerize non-kinetochore microtubules.

FRAP
FRAPwas conducted with amicroscope (LEM 780, Carl Zeiss MicroImaging, Inc.), using a 63 x objective lens. Images were acquired

every 5 s before and after photobleaching. The bleached area (BA) was set as it covers half spindle and illuminated at t = 0 using

560 nm laser (20 mW) with the following setting: speed 4.0 and iteration 1. Metaphase cells that orient parallel to the bottom

cover-glass were selected. HURP (TMR-Star) intensity of BA was normalized using the intensity of non-bleached area (NBA) that

covers the remaining half spindle. Corrected relative intensity at time tn was calculated as (BAn – BGn) / (BA-1 – BG-1) x (NBA-1 –

BG-1) / (NBAn – BGn), where t = �1 represents the first time point of image acquisition before bleaching. BG means background.55

Curve fitting and analyses shown in Figure S6 were performed using Fiji.53

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of Fluorescent Intensities
To quantify fluorescent intensities of SAFs and SiR-tubulin signals, line scans were performed in Fiji. A 15-pixel-width line was drawn

on 16-bit images as it passed on both spindle poles, and peak values were recorded as polar intensities after background subtrac-

tion. To analyze intensities on k-fibers, segmented lines with 3-pixel-width weremanually drawn on the k-fibers in tubulin images, and

then the lines were transferred to SAF images to quantify their signal intensities. To quantify RCC1 intensities on prometaphase chro-

mosomes in Figure 3D, chromosome regions weremanually definedwith SiR-DNA images, and the regionswere transferred to RCC1

images to quantify the intensities.

Statistical Analysis
To determine the significance of differences between the mean values obtained for two experimental conditions, Welch’s t tests

(Prism 6; GraphPad Software, La Jolla, CA) were used. One-way ANOVAwas performed in Figures 1D, 2F, and S7L–S7N using Prism

6. For all Figures: error bars indicate mean ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; scale bars = 10 mm.
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