391 research outputs found

    Production of Gas Bubbles in Reduced Gravity Environments

    Get PDF
    In a wide variety of applications such as waste water treatment, biological reactors, gas-liquid reactors, blood oxygenation, purification of liquids, etc., it is necessary to produce small bubbles in liquids. Since gravity plays an essential role in currently available techniques, the adaptation of these applications to space requires the development of new tools. Under normal gravity, bubbles are typically generated by forcing gas through an orifice in a liquid. When a growing bubble becomes large enough, the buoyancy dominates the surface tension force causing it to detach from the orifice. In space, the process is quite different and the bubble may remain attached to the orifice indefinitely. The most practical approach to simulating gravity seems to be imposing an ambient flow to force bubbles out of the orifice. In this paper, we are interested in the effect of an imposed flow in 0 and 1 g. Specifically, we investigate the process of bubble formation subject to a parallel and a cross flow. In the case of parallel flow, we have a hypodermic needle in a tube from which bubbles can be produced. On the other hand, the cross flow condition is established by forcing bubbles through an orifice on a wall in a shear flow. The first series of experiments have been performed under normal gravity conditions and the working fluid was water. A high quality microgravity facility has been used for the second type and silicone oil is used as the host liquid

    Effect of Subcultivation of Human Bone Marrow Mesenchymal Stem on their Capacities for Chondrogenesis, Supporting Hematopoiesis, and Telomea Length

    Get PDF
    Effects of subcultivation of human bone marrow mesenchymal stem cells on their capacities for chondrogenesis and supporting hematopoiesis, and telomea length were investigated. Mesenchymal stem cells were isolated from human bone marrow aspirates and subcultivated several times at 37℃ under a 5% CO2 atmosphere employing DMEM medium containing 10% FCS up to the 20th population doubling level (PDL). The ratio of CD45- CD105+ cells among these cells slightly increased as PDL increased. However, there was no marked change in the chondrogenic capacity of these cells, which was confirmed by expression assay of aggrecan mRNA and Safranin O staining after pellet cell cultivation. The change in capacity to support hematopoiesis of cord blood cells was not observed among cells with various PDLs. On the other hand, telomere length markedly decreased as PDL increased at a higher rate than that at which telomere length of primary mesenchymal stem cells decreased as the age of donor increased

    Epitaxially stabilized iridium spinel oxide without cations in the tetrahedral site

    Full text link
    Single-crystalline thin film of an iridium dioxide polymorph Ir2O4 has been fabricated by the pulsed laser deposition of LixIr2O4 precursor and the subsequent Li-deintercalation using soft chemistry. Ir2O4 crystallizes in a spinel (AB2O4) without A cations in the tetrahedral site, which is isostructural to lambda-MnO2. Ir ions form a pyrochlore sublattice, which is known to give rise to a strong geometrical frustration. This Ir spinel was found to be a narrow gap insulator, in remarkable contrast to the metallic ground state of rutile-type IrO2. We argue that an interplay of strong spin-orbit coupling and a Coulomb repulsion gives rise to an insulating ground state as in a layered perovskite Sr2IrO4.Comment: 9 pages, 3 figure

    Effect of pressure on single-chain magnets with repeating units of the MnIII-NiII-MnIII trimer

    Get PDF
    The single-chain magnet (SCM) system [Mn2(saltmen)2Ni(pao)2(L)2](A)2 (L: intrachain attaching ligand of NiII ion; A-1: interchain counteranion) is a ferromagnetic one-dimensional network system with repeating units of the MnIII-NiII-MnIII trimer which itself behaves as a single-molecule magnet with an S=3 spin ground state and negative uniaxial single-ion anisotropy (D) parallel to the bridging direction. The slow relaxation of the magnetic moment in this SCM system originates in an energy barrier for spin reversal (ΔE), which is closely related to the ferromagnetic interaction between the trimers (Jtrimer) as well as to the D of the trimer. We have investigated the effects of pressure on three compounds representative of the above SCM family through ac susceptibility measurements under hydrostatic pressures up to P=13.5 kbar and crystal structural analysis experiments up to P=20.0 kbar, and have observed a pronounced enlargement of ΔE when J was artificially increased. The application of hydrostatic pressure brought about the systematic enhancement of EΔ (a maximum increase of 10% within the pressure region of the experiments). The pressure dependence of EΔ varied according to the kind of attaching ligand L involved and the intrachain structure, and we have experimentally found that isotropic lattice shrinkage is desirable if a continuous increase of ΔE in this system is aimed at

    Pressure-Induced Ferromagnetic to Nonmagnetic Transition and the Enhancement of Ferromagnetic Interaction in the Thiazyl-Based Organic Ferromagnet γ-BBDTA·GaCl4

    Get PDF
    A thiazyl-based ferromagnet, the γ-phase of BBDTA (i.e., benzo[1,2- d :4,5- d \u27]bis[1,3,2]dithiazole)·GaCl 4 , has a high ferromagnetic ordering temperature of 7.0 K in organic radical ferromagnets. In this system, pressurization generated more compact molecular packing, resulting in that the ferromagnetic state at P = 16.2 kbar is stabilized over a temperature range of more than twice of the initial range. However, the saturation magnetic moment was reduced with increasing pressure, decreasing to about 12% of the initial value even at the low pressure level of P = 1.0 kbar. This suggests that the ferromagnetic molecular packing of the monoclinic γ-phase is easily transformed into that of the diamagnetic phase. Powder X-ray diffraction experiments revealed that the diamagnetic non-monoclinic (α- or β-) phase became stable instead of the monoclinic γ-phase across the pressure of 2.5–5.8 kbar. The increase in the temperature of onset of ferromagnetic state occurs in the surviving ferromagnetic domain surrounded by the diamagnetic domains

    High-pressure dc magnetic measurements on a bisdiselenazolyl radical ferromagnet using a vibrating-coil SQUID magnetometer

    Get PDF
    The high-pressure magnetic properties of the iodo-substituted bisdiselenazolyl radical ferromagnet IBPSSEt have been studied by vibrating-coil SQUID magnetometry. The magnetic state at a pressure (P) of approximately 2 GPa has the highest Curie temperature (TC) of 27.5 K, and displays an ideal three-dimensional (3D) ferromagnetic interaction network. The value of TC observed by ac magnetic susceptibility measurements is consistent with that obtained from dc measurements below approximately 4 GPa. Field-cooled dc measurements at more elevated pressures reveal a slow evolution of magnetic ordering, so that atP >6 GPa the structure may be described in terms of a 1D ferromagnetic chain with predominantly antiferromagnetic lateral (interchain) interactions, in accord with the results of density functional theory calculations

    Effects of Hydrostatic Pressure and Uniaxial Strain on Spin-Peierls Transition in an Organic Radical Magnet, BBDTA·InCl4

    Get PDF
    We investigated the effects of hydrostatic pressure and uniaxial strain on the spin-Peierls (SP) transition of an organic radical magnet, benzo[1,2-d:4,5-d\u27]bis[1,3,2]dithiazole(BBDTA)·InCl 4 . It has a one-dimensional coordination polymer structure along its c -axis and its SP transition occurs at 108 K. The SP transition temperature T SP decreased to 99 K at a hydrostatic pressure of 10 kbar, while it increased to 132 K at a uniaxial strain along the c -axis of 8 kbar. The pressure dependences of T SP under these two conditions were discussed by evaluating two parameters, namely, the intrachain interaction 2 J / k B and the effective spin–lattice coupling parameter η, that are related to T SP by the equation T SP =1.6η J / k B . Under ambient pressure, the a - and c -axes of this material shortened monotonically with decreasing temperature, while the b -axis elongated below T SP . In this study, we found the correlation between η and the change in the lattice constant b . 2 J / k B increased with increasing hydrostatic pressure and uniaxial strain, suggesting that the contraction along the c -axis does not depend on the manner of pressurization. From the evaluation of η, the observed variation in T SP is explained by the difference between the changes in b under the two pressurization conditions
    corecore