4,756 research outputs found

    Density-Matrix Renormalization Group Study of Trapped Imbalanced Fermi Condensates

    Full text link
    The density-matrix renormalization group is employed to investigate a harmonically-trapped imbalanced Fermi condensate based on a one-dimensional attractive Hubbard model. The obtained density profile shows a flattened population difference of spin-up and spin-down components at the center of the trap, and exhibits phase separation between the condensate and unpaired majority atoms for a certain range of the interaction and population imabalance PP. The two-particle density matrix reveals that the sign of the order parameter changes periodically, demonstrating the realization of the Fulde-Ferrell-Larkin-Ovchinnikov phase. The minority spin atoms contribute to the quasi-condensate up to at least P0.8P \simeq 0.8. Possible experimental situations to test our predictions are discussed.Comment: 4 pages, 3 figures; added references; accepted for publication in Phys. Rev. Let

    Dynamical theory of superfluidity in one dimension

    Get PDF
    A theory accounting for the dynamical aspects of the superfluid response of one dimensional (1D) quantum fluids is reported. In long 1D systems the onset of superfluidity is related to the dynamical suppression of quantum phase slips at low temperatures. The effect of this suppression as a function of frequency and temperature is discussed within the framework of the relevant correlation function that is accessible experimentally, namely the momentum response function. Application of these results to the understanding of the superfluid properties of helium confined in nanometer-size pores, edge dislocations in solid 4^4He, and ultra-cold atomic gases is also briefly discussed.Comment: 4.4 pages, 2 eps figures, and 1 page of supplementary informatio

    Mass Spectrum Dependence of Higgs-mediated mu-e Transition in the MSSM

    Full text link
    In this paper, we study non-decoupling μ\mu - ee transition effects by Higgs-mediated contribution in the MSSM, when some SUSY mass parameters are much greater than TeV. In order to treat CP-odd Higgs mass mA0m_{A^{0}} as a free parameter, we consider the non-universal Higgs mass model (NUHM), and assume the only left- or right-handed sleptons had flavor-mixing mass terms. If both Higgs-mediated and ordinary SUSY contribution are significant, the ratio of branching ratios \BR(\meg) / \BR(\maleal) becomes sensitive to SUSY mass parameters. We investigated these mass-sensitive regions and the behavior of the ratio \BR(\meg) / \BR(\maleal) in some mass spectrum of the NUHM, and found that this ratio drastically depends on the mass spectrum structure and chirality of flavor violation. Log factor from two split mass scale influences the way of interference between gaugino- and Higgs-mediated contributions significantly.Comment: 19 pages, 8 figures, it will appear in PR

    Destruction of Long-range Order by Quenching the Hopping Range in One Dimension

    Get PDF
    We study the dynamics in a one dimensional hard-core Bose gas with power-law hopping after an abrupt reduction of the hopping range using the time-dependent density-matrix renormalization group (t-DMRG) and bosonization techniques. In particular, we focus on the destruction of the Bose-Einstein condensate (BEC), which is present in the initial state in the thermodynamic limit. We argue that this type of quench is akin to a sudden reduction in the effective dimensionality dd of the system (from d>1d > 1 to d=1d = 1). We identify two regimes in the evolution of the BEC fraction. For short times the decay of the BEC fraction is Gaussian while for intermediate to long times, it is well described by a stretched exponential with an exponent that depends on the initial effective dimensionality of the system. These results are potentially relevant for cold trapped-ion experiments which can simulate an equivalent of hard-core bosons, i.e. spins, with tunable long-range interactions.Comment: 8 pages, 7 figures, accepted for publication in Phys. Rev.

    Effects of Freezing on Soil Temperature, Freezing Front Propagation and Moisture Redistribution in Peat: Laboratory Investigations

    Get PDF
    There are not many studies that report water movement in freezing peat. Soil column studies under controlled laboratory settings can help isolate and understand the effects of different factors controlling freezing of the active layer in organic covered permafrost terrain. In this study, four peat Mesocosms were subjected to temperature gradients by bringing the Mesocosm tops in contact with subzero air temperature while maintaining a continuously frozen layer at the bottom (proxy permafrost). Soil water movement towards the freezing front (from warmer to colder regions) was inferred from soil freezing curves, liquid water content time series and from the total water content of frozen core samples collected at the end of freezing cycle. A substantial amount of water, enough to raise the upper surface of frozen saturated soil within 15 cm of the soil surface at the end of freezing period appeared to have moved upwards during freezing. Diffusion under moisture gradients and effects of temperature on soil matric potential, at least in the initial period, appear to drive such movement as seen from analysis of freezing curves. Freezing front (separation front between soil zones containing and free of ice) propagation is controlled by latent heat for a long time during freezing. A simple conceptual model describing freezing of an organic active layer initially resembling a variable moisture landscape is proposed based upon the results of this study. The results of this study will help in understanding, and ultimately forecasting, the hydrologic response of wetland-dominated terrain underlain by discontinuous permafrost

    Magnon bands of N-leg integer-spin antiferromagnetic systems in the weak interchain-coupling regime

    Full text link
    Using the exact results of the O(3) nonlinear sigma model (NLSM) and a few quantitative numerical data for integer-spin antiferromagnetic (AF) chains, we systematically estimate all magnon excitation energies of N-leg integer-spin AF ladders and tubes in the weak-interchain-coupling regime. Our method is based on a first-order perturbation theory for the strength of the interchain coupling. It can deal with any kind of interchain interactions, in principle. We confirm that results of the perturbation theory are in good agreement with those of a quantum Monte Carlo simulation and with our recent study based on a saddle-point approximation of the NLSM [Phys. Rev. B 72, 104438 (2005)]. Our theory further supports the existence of a Haldane (gapped) phase even in a d-dimensional (d\geq 2) spatially anisotropic integer-spin AF model, if the exchange coupling in one direction is sufficiently strong compared with those in all the other directions. The strategy in this paper is applicable to other N-leg systems consisting of gapped chains which low-energy physics is exactly or quantitatively known.Comment: 11 pages, 4 figures, Revtex, published version, see also cond-mat/0506049 (PRB72, 104438 (2005)
    corecore