72 research outputs found

    Steering the Climate System: Using Inertia to Lower the Cost of Policy

    Get PDF
    Conventional wisdom holds that the efficient way to limit warming to a chosen level is to price carbon emissions at a rate that increases exponentially. We show that this “Hotelling” tax on carbon emissions is actually inefficient. The least-cost policy path takes advantage of the climate system’s inertia by growing more slowly than exponentially. Carbon dioxide temporarily overshoots the steady-state level consistent with the temperature limit, and the efficient carbon tax follows an inverse-U-shaped path. Economic models that assume exponentially increasing carbon taxes are overestimating the minimum cost of limiting warming, overestimating the efficient near-term carbon tax, and overvaluing technologies that mature sooner

    Association between the rs1465040 single-nucleotide polymorphism close to the transient receptor potential subfamily C member 3 (TRPC3) gene and postoperative analgesic requirements

    Get PDF
    AbstractAn association between postoperative analgesic requirements in subjects who underwent orthognathic surgery and the rs1465040 single-nucleotide polymorphism close to the transient receptor potential subfamily C member 3 (TRPC3) gene was suggested by our previous genome-wide association study. To verify this association, we analyzed the association between the rs1465040 SNP and analgesic requirements, including opioid requirements, after open abdominal surgery. The association between the rs1465040 SNP and postoperative analgesic requirements was confirmed in the open abdominal surgery group (P = 0.036), suggesting that the TRPC3 SNP may contribute to predicting postoperative analgesic requirements

    Association between KCNJ6 (GIRK2) Gene Polymorphisms and Postoperative Analgesic Requirements after Major Abdominal Surgery

    Get PDF
    Opioids are commonly used as effective analgesics for the treatment of acute and chronic pain. However, considerable individual differences have been widely observed in sensitivity to opioid analgesics. We focused on a G-protein-activated inwardly rectifying potassium (GIRK) channel subunit, GIRK2, that is an important molecule in opioid transmission. In our initial polymorphism search, a total of nine single-nucleotide polymorphisms (SNPs) were identified in the whole exon, 5′-flanking, and exon-intron boundary regions of the KCNJ6 gene encoding GIRK2. Among them, G-1250A and A1032G were selected as representative SNPs for further association studies. In an association study of 129 subjects who underwent major open abdominal surgery, the A/A genotype in the A1032G SNP and -1250G/1032A haplotype were significantly associated with increased postoperative analgesic requirements compared with other genotypes and haplotypes. The total dose (mean±SEM) of rescue analgesics converted to equivalent oral morphine doses was 20.45±9.27 mg, 10.84±2.24 mg, and 13.07±2.39 mg for the A/A, A/G, and G/G genotypes in the A1032G SNP, respectively. Additionally, KCNJ6 gene expression levels in the 1032A/A subjects were significantly decreased compared with the 1032A/G and 1032G/G subjects in a real-time quantitative PCR analysis using human brain tissues, suggesting that the 1032A/A subjects required more analgesics because of lower KCNJ6 gene expression levels and consequently insufficient analgesic effects. The results indicate that the A1032G SNP and G-1250A/A1032G haplotype could serve as markers that predict increased analgesic requirements. Our findings will provide valuable information for achieving satisfactory pain control and open new avenues for personalized pain treatment

    Influence of Filling Process of Portable Pumps on Concentration Homogeneity of 5-Fluorouracil in Pump

    No full text

    Epidural Analgesia for Postoperative Pain Relief

    No full text

    MDM2 regulates a novel form of incomplete neoplastic transformation of Theileria parva infected lymphocytes

    Get PDF
    Our efforts are concerned with identifying features of incomplete malignant transformation caused by non viral pathogens. Theileria parva (T. parva) is a tick-transmitted protozoan parasite that can cause a fatal lymphoproliferative disease in cattle. The T. parva-infected lymphocytes display a transformed phenotype and proliferate in culture media like the other tumor cells, however those cells will return to normal after antiprotozoal treatment reflecting the incomplete nature of transformation. To identify signaling pathways involved in this form of transformation of T. parva-infected cells, we screened a library of anticancer compounds. Among these, TIBC, a specific inhibitor of MDM2, markedly inhibited proliferation of T. parva-infected lymphocytes and promoted apoptosis. Therefore we analyzed MDM2 function in T. parva-infected cells. Several T. parva-infected cell lines showed increased expression level of MDM2 with alternatively spliced isoforms compared to the lymphoma cells or ConA blasts. In addition, buparvaquone affected MDM2 expression in T. parva transformed cells. Moreover, p53 protein accumulation and function were impaired in T. parva-infected cells after cisplatin induced DNA damage despite the increased p53 transcription level. Finally, the treatment of T. parva-infected cells with boronic-chalcone derivatives TIBC restored p53 protein accumulation and induced Bax expression. These results suggest that the overexpression of MDM2 is closely linked to the inhibition of p53-dependent apoptosis of T. parva-infected lymphocytes. Aberrant expression of host lymphocyte MDM2 induced by cytoplasmic existence of T. parva, directly and/or indirectly, is associated with aspects of this type of transformation of T. parva-infected lymphocytes. This form of transformation shares features of oncogene induced malignant phenotype acquisition

    Association between Genetic Polymorphisms in Ca(v)2.3 (R-type) Ca2+ Channels and Fentanyl Sensitivity in Patients Undergoing Painful Cosmetic Surgery

    Get PDF
    Individual differences in the sensitivity to fentanyl, a widely used opioid analgesic, lead to different proper doses of fentanyl, which can hamper effective pain treatment. Voltage-activated Ca2+ channels (VACCs) play a crucial role in the nervous system by controlling membrane excitability and calcium signaling. Ca(v)2.3 (R-type) VACCs have been especially thought to play critical roles in pain pathways and the analgesic effects of opioids. However, unknown is whether single-nucleotide polymorphisms (SNPs) of the human CACNA1E (calcium channel, voltage-dependent, R type, alpha 1E subunit) gene that encodes Ca(v)2.3 VACCs influence the analgesic effects of opioids. Thus, the present study examined associations between fentanyl sensitivity and SNPs in the human CACNA1E gene in 355 Japanese patients who underwent painful orofacial cosmetic surgery, including bone dissection. We first conducted linkage disequilibrium (LD) analyses of 223 SNPs in a region that contains the CACNA1E gene using genomic samples from 100 patients, and a total of 13 LD blocks with 42 Tag SNPs were observed within and around the CACNA1E gene region. In the preliminary study using the same 100 genomic samples, only the rs3845446 A/G SNP was significantly associated with perioperative fentanyl use among these 42 Tag SNPs. In a confirmatory study using the other 255 genomic samples, this SNP was also significantly associated with perioperative fentanyl use. Thus, we further analyzed associations between genotypes of this SNP and all of the clinical data using a total of 355 samples. The rs3845446 A/G SNP was associated with intraoperative fentanyl use, 24 h postoperative fentanyl requirements, and perioperative fentanyl use. Subjects who carried the minor G allele required significantly less fentanyl for pain control compared with subjects who did not carry this allele. Although further validation is needed, the present findings show the possibility of the involvement of CACNA1E gene polymorphisms in fentanyl sensitivity

    Anti-Inflammatory Action of Dexmedetomidine on Human Microglial Cells

    No full text
    Neuroinflammation, where inflammatory cytokines are produced in excess, contributes to the pathogenesis of delirium. Microglial cells play a central role in neuroinflammation by producing and releasing inflammatory cytokines in response to infection, tissue damage and neurodegeneration. Dexmedetomidine (DEX) is a sedative, which reduces the incidence of delirium. Thus, we hypothesized that DEX may alleviate delirium by exhibiting anti-inflammatory action on microglia. In the present study, we investigated the anti-inflammatory action of DEX on human microglial HMC3 cells. The results indicated that DEX partially suppressed the IL-6 and IL-8 production by lipopolysaccharide (LPS)-stimulated HMC3 cells as well as the phosphorylation of p38 MAPK and IκB and the translocation of NF-κB. Furthermore, DEX substantially suppressed IL-6 and IL-8 production by unstimulated HMC3 cells as wells as the phosphorylation of p38 MAPK and IκB and the translocation of NF-κB. These observations suggest that DEX exhibits anti-inflammatory action on not only LPS-stimulated but also unstimulated microglial cells via the suppression of inflammatory signaling and cytokine production
    corecore