43 research outputs found

    MgB2 SQUID for Magnetocardiography

    Get PDF

    Studies on the Fluorine Generation by Fused Salt Electrolysis of KF·2HF at about 100°C

    Get PDF
    Fluorine generation by fused salt electrolysis of KF・2HF at medium temperature of about 100°C was studied from view points of anodic polarization and anode effect. At first, equipment for manufacturing anhydrous HF and a 100 Amp fluorine cell were designed and operated. Various anodic materials (carbons with different grades of graphitization, nickel, C-Cu alloy etc.) were used and the suitable materials for the fluorine generation were selected. Some additional agents (LiF, AlF₃, NiF₂ etc.) were added to the electrolyte and their effects to anodic polarization were considered from various points. Anodic polarization (or the degree of anode effect) have been proved to have the relation with the wettability of anode by electrolyte. Wettabilities of each electrode were measured by the measurement of sizes, forms and contact angles of bubbles on the anode surface by microphotographic observation. The relation between the wettability and limiting current densities at which anode effect starts, was discussed

    Anomalous elastic softening of SmRu_{4}P_{12} under high pressure

    Get PDF
    The filled skutterudite compound SmRu_4P_{12} undergoes a complex evolution from a paramagnetic metal (phase I) to a probable multipolar ordering insulator (phase II) at T_{MI} = 16.5 K, then to a magnetically ordered phase (phase III) at T_{N} = 14 K. Elastic properties under hydrostatic pressures were investigated to study the nature of the ordering phases. We found that distinct elastic softening above T_{MI} is induced by pressure, giving evidence of quadrupole degeneracy of the ground state in the crystalline electric field. It also suggests that quadrupole moment may be one of the order parameters below T_{MI} under pressure. Strangely, the largest degree of softening is found in the transverse elastic constant C_{T} at around 0.5-0.6 GPa, presumably having relevancy to the competing and very different Gruneisen parameters \Omega of T_{MI} and T_{N}. Interplay between the two phase transitions is also verified by the rapid increase of T_{MI} under pressure with a considerably large \Omega of 9. Our results can be understood on the basis of the proposed octupole scenario for SmRu_4P_{12}.Comment: 7 pages, 7 figure

    Elastic properties of the Non-Fermi liquid metal CeRu4Sb12Ce Ru_4 Sb_{12} and the Dense Kondo semiconductor CeOs4Sb12Ce Os_4 Sb_{12}

    Get PDF
    We have investigated the elastic properties of the Ce-based filled skutterudite antimonides CeRu4_{4}Sb12_{12} and CeOs4_{4}Sb12_{12} by means of ultrasonic measurements. CeRu4_{4}Sb12_{12} shows a slight increase around 130 K in the temperature dependence of the elastic constants CC11_{11}, (CC11_{11}-CC12_{12})/2 and CC44_{44}. No apparent softening toward low temperature due to a quadrupolar response of the 4ff-electronic ground state of the Ce ion was observed at low temperatures. In contrast CeOs4_{4}Sb12_{12} shows a pronounced elastic softening toward low temperature in the longitudinal CC11_{11} as a function of temperature (TT) below about 15 K, while a slight elastic softening was observed in the transverse CC44_{44} below about 1.5 K. Furthermore, CeOs4_{4}Sb12_{12} shows a steep decrease around a phase transition temperature of 0.9 K in both CC11_{11} andC C44_{44}. The elastic softening observed in CC11_{11} below about 15 K cannot be explained reasonably only by the crystalline electric field effect. It is most likely to be responsible for the coupling between the elastic strain and the quasiparticle band with a small energy gap in the vicinity of Fermi level. The elastic properties and the 4ff ground state of Ce ions in CeRu4_{4}Sb12_{12} and CeOs4_{4}Sb12_{12} are discussed from the viewpoint of the crystalline electric field effect and the band structure in the vicinity of Fermi level.Comment: 9 pages, 11 figures, regular pape

    Cutaneous T-cell-attracting chemokine as a novel biomarker for predicting prognosis of idiopathic pulmonary fibrosis: a prospective observational study

    Get PDF
    [Background] Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic lung disease that leads to respiratory failure and death. Although there is a greater understanding of the etiology of this disease, accurately predicting the disease course in individual patients is still not possible. This study aimed to evaluate serum cytokines/chemokines as potential biomarkers that can predict outcomes in IPF patients. [Methods] A multi-institutional prospective two-stage discovery and validation design using two independent cohorts was adopted. For the discovery analysis, serum samples from 100 IPF patients and 32 healthy controls were examined using an unbiased, multiplex immunoassay of 48 cytokines/chemokines. The serum cytokine/chemokine values were compared between IPF patients and controls; the association between multiplex measurements and survival time was evaluated in IPF patients. In the validation analysis, the cytokines/chemokines identified in the discovery analysis were examined in serum samples from another 81 IPF patients to verify the ability of these cytokines/chemokines to predict survival. Immunohistochemical assessment of IPF-derived lung samples was also performed to determine where this novel biomarker is expressed. [Results] In the discovery cohort, 18 cytokines/chemokines were significantly elevated in sera from IPF patients compared with those from controls. Interleukin-1 receptor alpha (IL-1Rα), interleukin-8 (IL-8), macrophage inflammatory protein 1 alpha (MIP-1α), and cutaneous T-cell-attracting chemokine (CTACK) were associated with survival: IL-1Rα, hazard ratio (HR) = 1.04 per 10 units, 95% confidence interval (95% CI) 1.01–1.07; IL-8, HR = 1.04, 95% CI 1.01–1.08; MIP-1α, HR = 1.19, 95% CI 1.00–1.36; and CTACK, HR = 1.12 per 100 units, 95% CI 1.02–1.21. A replication analysis was performed only for CTACK because others were previously reported to be potential biomarkers of interstitial lung diseases. In the validation cohort, CTACK was associated with survival: HR = 1.14 per 100 units, 95% CI 1.01–1.28. Immunohistochemistry revealed the expression of CTACK and CC chemokine receptor 10 (a ligand of CTACK) in airway and type II alveolar epithelial cells of IPF patients but not in those of controls. [Conclusions] CTACK is a novel prognostic biomarker of IPF
    corecore