73 research outputs found

    Single Nuclear Spin Cavity QED

    Full text link
    We constructed a cavity QED system with a diamagnetic atom of 171Yb and performed projective measurements on a single nuclear spin. Since Yb has no electronic spin and has 1/2 nuclear spin, the procedure of spin polarization and state verification can be dramatically simplified compared with the pseudo spin-1/2 system. By enhancing the photon emission rate of the 1S0-3P1 transition, projective measurement is implemented for an atom with the measurement time of T_meas = 30us. Unwanted spin flip as well as dark counts of the detector lead to systematic error when the present technique is applied for the determination of diagonal elements of an unknown spin state, which is delta|beta|^2 < 2 * 10^-2. Fast measurement on a long-lived qubit is key to the realization of large-scale one-way quantum computing.Comment: 5 pages, 5 figure

    Total Synthesis and Structural Revision of Cyclotetrapeptide Asperterrestide A

    Get PDF
    The structural revision of cyclotetrapeptide asperterrestide A has been achieved based on total synthesis and molecular modeling. For these studies, (2R,3S)-MePhe­(3-OH) and (2S,3S)-MePhe­(3-OH) suitably protected for peptide synthesis were prepared via a stereoselective reduction of a ketone precursor derived from L- or d-serine, using L-selectride or DIBAL-H. The synthesis of the proposed structure of asperterrestide A (1a) was accomplished by solution-phase synthesis of a linear precursor followed by macrolactamization. The NMR spectra of our synthetic 1a were not identical to those reported for the natural compound. Molecular modeling studies suggested that the correct structure 1b was the one in which the stereochemistry at the α-positions of the Ala and MePhe­(3-OH) residues is the opposite to that of the proposed structure. This was confirmed by the total synthesis of 1b and its subsequent structural characterization
    corecore