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Abstract 

  The structural revision of cyclotetrapeptide asperterrestide A has been achieved based on the total synthesis 

and molecular modeling. For these studies, (2R,3S)-MePhe(3-OH) and (2S,3S)-MePhe(3-OH) suitably protected 

for peptide synthesis, were prepared via a stereoselective reduction of a ketone precursor, derived from L- or 

D-serine, using L-Selectride or DIBAL-H. The synthesis of the proposed structure of asperterrestide A (1a) was 

accomplished by solution-phase synthesis of a linear precursor followed by macrolactamization. The NMR 

spectra of our synthetic 1a were not identical to those reported for the natural compound. Molecular modeling 

studies suggested that the correct structure (1b) was one in which the stereochemistry at the α-positions of the 

Ala and MePhe(3-OH) residues is the opposite to that of the proposed structure. This was confirmed by the total 

synthesis of 1b and its subsequent structural characterization.  
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INTRODUCTION 

Naturally occurring cyclopeptides exhibit unique biological activities and often possess nonproteinogenic 

amino acid residues: β-amino acids, D-amino acids, N-methylamino acids, and other highly functionalized amino 

acids.1, 2 Among them, anthranilic acid (Ant)-containing peptides are known to be attractive three-dimensional 

scaffolds of peptidomimetics because anthranilic acid is one of the most rigid β-amino acids and gives 

conformational rigidity to the corresponding cyclic and even linear peptides.3–9  

Asperterrestide A (1), a cyclotetrapeptide isolated from a fermentation broth of marine-derived fungal strain 

Aspergillus terreus SCSGAF0162 in 2013,10 was reported to consist of four nonproteinogenic amino acids: 

D-Ala, Ant, (2R,3S)-MePhe(3-OH), and D-Ile or D-allo-Ile (Figure 1). The stereochemistry at the α-positions of 

Ala and Ile was determined by chiral-phase HPLC analysis and Marfey’s methods after acidic degradation, 

whereas the D-Ile or D-allo-Ile residue was not differentiated in the original report. Asperterrestide A (1) exhibits 

cytotoxicity for human carcinoma cell lines with IC50 values of 6.4 µM against U937 and 6.2 µM against 

MOLT4 and inhibits influenza virus strains with IC50 values of 15 µM against A/WSN/33 (H1N1) and 8.1 µM 

against A/Hong Kong/8/68 (H3N2), respectively. Because Ant-containing 13-membered cyclotetrapeptides are 

rare in nature11 compared with cyclopenta-12–14 and cyclohexapeptides,15–17 it is worthwhile to reveal the 

three-dimensional macrocyclic conformation of 1 for the design of novel peptidomimetics. Herein, we report the 

total synthesis of asperterrestide A (1) via solution-phase peptide elongation, followed by macrolactamization 

and its structural revision based on the molecular modeling and NMR analysis of the synthesized peptides. 

 
Figure 1. Reported structure of asperterrestide A (1) 
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RESULTS AND DISCUSSION 

There have been recent reports for the structure elucidation of ambiguous configuration of enantiomeric 

isoleucine residues to be D-allo-Ile in cyclic peptide natural products18-20 and it would be likely produced by the 

epimerization of L-Ile at the α-position in secondary metabolites not that at both α- and β-positions, though some 

examples having a D-Ile reside as a component are in literature.21,22 

Cyclo-[D-allo-Ile−(2R,3S)-MePhe(3-OH)−Ant−D-Ala] (1a), thus, was speculated to be the structure of natural 

asperterrestide A. Our retrosynthetic analysis for 1a is illustrated in Scheme 1. The macrolactamization is a key 

step for the total synthesis of 1a. The cyclization site should be carefully selected considering i) the 

nucleophilicity of N-terminus and ii) possible side reactions after the activation of C-terminus. Aromatic amines 

involved in resonance and sterically hindered N-methylamines are generally inappropriate as the N-terminus of 

the macrolactamization site due to low nucleophilicity. Besides, the activated carboxylic acid group of an Ant 

residue might induce benzoxazinone formation during the cyclization process.7, 23, 24 Therefore, we planed the 

macrolactamization between N-terminus D-allo-Ile and C-terminus D-Ala of the linear tetrapeptide 2a. 

Furthermore, we anticipated that the conformationally rigid Ant residue would be turn-inducing and support the 

access of both reaction sites. The cyclization precursor 2a would be provided by peptide elongation using four 

amino acids: D-allo-Ile, (2R,3S)-MePhe(3-OH), Ant and D-Ala.  

 

Scheme 1. Retrosynthetic analysis of the proposed structure of asperterrestide A (1a) 



 

 

Our study began from the stereoselective synthesis of a nonstandard (2R,3S)-MePhe(3-OH) residue. 

Structurally similar β-hydroxy-p-iodo-N-methylphenylalanine derivatives bearing anti configurations have been 

synthesized by Boger and coworkers via asymmetric epoxidation or dihydroxylation of cinnamic acid 

derivatives;25 however, there are no reports describing the synthesis of N-methylated syn derivatives. The 

nucleophilic addition of alkyl metal species to the Garner’s aldehyde is one of the reliable methods to give facile 

and stereoselective access to 2-amino-1,3-dihydroxypropyl substructures.26 However, highly reactive 

organometallic species react with the Garner’s aldehyde to give a mixture of syn and anti products with low 

diastereomeric ratios (dr) due to a competition between steric (Felkin-Anh) and chelation effects. Therefore, two 

additional steps (oxidation of the hydroxy group to the ketone followed by stereoselective reduction of the 

ketone back to the alcohol) are required to give the syn or anti product in high dr.27–29 Thus, a step-economical 

and stereoselective approach to  (2R,3S)-MePhe(3-OH) is desirable. 

Our synthetic approach to Fmoc-(2R,3S)-MePhe(3-OTBS)-OH (9a) is shown in Scheme 2. In initial studies 

for the synthesis of 9a, we found that the late-stage N-methylation of β-hydroxyphenylalanine derivatives had 

poor reproducibility due to side reactions such as β-elimination of the hydroxy group under acidic and basic 

conditions. Therefore, we chose to introduce a methyl group on the nitrogen in the absence of a carboxyl group. 

Starting from commercially available Boc-L-Ser-OH, the phenyl ketone 3 was prepared according to the reported 
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procedures by Appella and coworkers.30 The stereoselective reduction of the ketone 3 via the Felkin-Anh model 

successfully proceeded with L-Selectride, providing syn-enriched 4a in 86% yield (syn:anti = 89:11). After the 

TBS-protection of the resulting alcohol in 4a, the methylation of the amino group in 5a using excess amounts of 

NaH and MeI31 furnished the N-methylcarbamate 6a. The Boc group in 6a was removed by 

TMSOTf/2,6-lutidine32, 33 without losing acid-labile TBS groups, and the subsequent protection with an Fmoc 

group gave the Fmoc amine 7a in 97% yield over two steps. The selective cleavage of the primary TBS ether in 

7a using HF·pyridine was then carried out. The syn-product and minor anti-diastereomer were separated by silica 

gel column chromatography in this step, and the alcohol 8a was obtained in 64% yield as a single diastereomer. 

Finally, the oxidation of the primary alcohol using TEMPO/NaOCl/NaClO2
34 furnished the desired carboxylic 

acid 9a.  

 

Scheme 2. Synthesis of (2R,3S)-Fmoc-MePhe(3-OTBS)-OH (9a) 
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With synthetic 9a in hand, compound 1a was prepared as outlined in Scheme 3. H-D-Ala-OtBu and 

Fmoc-Ant-OH were coupled with EDCI·HCl/HOBt to give the dipeptide 10 in 88% yield. The benzoxazinone 

formation was not observed under this coupling condition. After removal of the Fmoc group in 10 with 20% 

Et2NH/MeCN, we performed the acylation of the low-nucleophilic Ant amine with sterically hindered carboxylic 

acid 9a. The in situ generated amino acid chloride of 9a using triphosgene/2,4,6-collidine35–38 is useful for the 

acylation of the aromatic amine, and the desired tripeptide 11a was obtained in 90% yield without epimerization 

at the α-position. The Fmoc group in 11a was removed in the same manner as described above, and we next 

attempted the coupling between the sterically hindered N-methylamine and bulky Boc-D-allo-Ile-OH. After trials 

of several coupling reagents (HATU/DIEA, PyBroP/DIEA, triphosgene/2,4,6-collidine, and COMU/DIEA), we 

found that COMU completed the coupling reaction to provide the tetrapeptide 12 in 57% yield. The concomitant 

removal of the Boc, tert-butyl, and TBS groups in 12 with 50% TFA in CH2Cl2 furnished the cyclization 

precursor 2a as its TFA salt. Subsequent macrolactamization of 2a was performed using HATU/DIEA under 

high dilution conditions (1 mM). No epimerization at the α-position of the Ala residue was observed during the 

cyclization process, and the resulting crude cyclopeptide was purified by normal-phase silica gel column 

chromatography and preparative thin-layer chromatography to isolate the proposed structure of asperterrestide A 

(1a) in 36% yield from 12. 

 

Scheme 3. Synthesis of the proposed structure of asperterrestide A (1a) 



  

 

The 1H and 13C NMR spectroscopic data of synthetic 1a, however, are not identical to those of natural 

asperterrestide A, as shown in Figure 2 and Table S1 (Supporting Information). In particular, the chemical shifts 
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NH, which were observed in the natural compound, were not found in synthetic 1a (see Supporting Information). 
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of the Ala residue was unclear. Chiral HPLC analysis with authentic L-Ala and D-Ala did not show clear 

differences in their retention times. 1-Fluoro-2,4-dinitrophenyl-5-alanine-amide (FDAA) derivatives of the acid 

hydrolysates might suggest containing both L-Ala and D-Ala on the HPLC chromatogram. Because the 

epimerization of the α-position during hydrolysis process was indicated, it is not possible to prove the absolute 

configuration of the Ala residue. In addition, the stereochemistry of the α-position of (2R,3S)-MePhe(3-OH) is 

ambiguous. The stereochemistry of the β-position is assigned to be S using the modified Mosher’s ester method 

for the natural compound. On the other hand, there is no spectroscopic evidence that a large coupling constant 

(3JH,H = 10.0 Hz) between α- and β-protons of the MePhe(3-OH) residue suggests a syn arrangement in 

conformationally constrained cyclotetrapeptides because the relative configuration was deduced in reference to 

previously reported β-hydroxy-Tyr-containing cyclooctapeptides39 and other acyclic fragments (3JH,H = 3.5–4.8 

Hz for anti and 4.6–6.6 Hz for syn, respectively).40–42 Jung’s group has recently reported that a large coupling 

constant (3JH,H = 9.5 Hz) between α- and β-protons of the MePhe(3-OH) residue was observed in a 12-membered 

cyclotetrapeptide named tentoxin B.43 The absolute configuration was assigned to be (2S, 3S) by the modified 

Mosher’s method followed by the comparison of the lowest energy-conformer obtained by molecular modeling 

to the X-ray crystallographic structure of its dehydroxy analog. These analytical reports by Jung and the fact that 

our synthetic syn-product 1a showed a small coupling constant (3JH,H = 2.5 Hz) strongly support the relative 

configuration of natural 1 to be anti. Therefore, the absolute configuration in the MePhe(3-OH) should be 

(2S,3S), not (2R,3S). In summary, we deduced the absolute configuration of the natural asperterrestide A to be 

cyclo-[D-allo-Ile−(2S,3S)-MePhe(3-OH)−Ant−Ala] (1b) or 

cyclo-[D-allo-Ile−(2S,3S)-MePhe(3-OH)−Ant−D-Ala] (1c) (Figure 3).  

 



 

Figure 2. (a) Δδ(1H), and (b) Δδ(13C) values of constituting four amino acids in synthetic 1a in CDCl3. Δδ = 

δsynthetic 1a (ppm) – δnatural 1 (ppm). Table S1 (Supporting Information) summarizes NMR spectroscopic data of 1a.  
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Figure 3. Putative structures of natural asperterrestide A (1) 

 

To narrow down the putative candidates of natural asperterrestide A, we conducted molecular modeling 
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found to be in good agreement with those observed in our synthetic 1a, not the natural product (Table S9, 

Supporting Information). Theoretical distances between proximal protons in 1d also fit the result of NOE 

correlations observed in 1a. Among five NOE correlations observed in the natural 1, the calculated distances in 

1d between MePhe(3-OH) Hβ / MePhe(3-OH) NMe (4.36 Å) and Ala Hα / Val NH (3.55 Å) seem to be long to 

get NOE correlations as well as 1a (Table S10, Supporting Information). These main chain-derived correlations 

should be important to define the three-dimensional structures of conformationally constrained cyclopeptides. 

Therefore, we concluded that the molecular modeling using the model tetrapeptide is a reliable and adoptable 

method for estimating the stereochemistry of natural asperterrestide A. 

 

Figure 4. (a) Chemical structures of the synthetic 1a and its model tetrapeptide 1d. (b) The lowest-energy 

conformer of 1d. The calculated distinctive coupling constants (plain, left) and theoretical distances between 

proximal protons (dashed, right) are shown in double-headed arrows. Tables S9 and S10 (Supporting 

Information) summarize calculated data of 1d. 
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  According to the procedure mentioned above, the molecular modeling of our putative structures of 

asperterrestide A was carried out. Conformational searches of cyclo-[D-Val−(2S,3S)-MePhe(3-OH)−Ant−Ala] 

(1e) and cyclo-[D-Val−(2S,3S)-MePhe(3-OH)−Ant−D-Ala] (1f) (Figure 5a) that are corresponding model 

tetrapeptides of 1b and 1c gave the lowest-energy conformers as shown in Figures 5b and 5c. The calculated 

dihedral angles and distances between proximal protons are summarized in Tables S11 and S12 (Supporting 

Information), respectively. Focused on the MePhe(3-OH), the calculated 3JH,H coupling constants between 

MePhe(3-OH) Hα / MePhe(3-OH) Hβ in both 1e and 1f (3JH,H = 9.5 Hz, respectively) are as large as that of the 

natural 1 (3JH,H = 10.0 Hz). In addition, all the theoretical distances of the protons involved in NMe and Hα of 

the MePhe(3-OH) residue in 1e and 1f are relatively short within 3.0 Å, satisfying the NOE observation in the 

natural compound. These calculated results strongly supported our suggestion that the absolute configuration of 

the MePhe(3-OH) residue in the natural 1 should be (2S,3S). The calculated values related to the Ala residue in 

1e are also in good agreement with those of the natural 1, whereas relatively small 3JH,H coupling constants 

between Ala NH / Ala Hα (3JH,H = 6.5 Hz) and long distances between Ile NH / Ala Hα (3.55 Å) and Ala NH / 

Ala Hβ (3.39 Å) were found in D-Ala-containing 1f. Therefore, the component in the natural product was 

speculated to be L-Ala, not D-Ala. Considering these results, we argued that 

cyclo-[D-Val−(2S,3S)-MePhe(3-OH)−Ant−Ala] (1e) would follow the stereochemistry of natural asperterrestide 

A, and the stereochemistry of natural asperterrestide A should be corresponding to 

cyclo-[D-allo-Ile−(2S,3S)-MePhe(3-OH)−Ant−Ala] (1b). 

 



 

Figure 5. (a) Chemical structures of model tetrapeptides 1e and 1f. (b) The lowest-energy conformer of 1e. (c) 

The lowest-energy conformer of 1f. The calculated distinctive coupling constants (plain, left) and theoretical 

distances between proximal protons (dashed, right) are shown in double-headed arrows. Tables S11 and S12 

(Supporting Information) summarize calculated data of 1e and 1f. 
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To validate our revised structure of natural asperterrestide A, it was necessary to prepare 

(2S,3S)-MePhe(3-OH) (Scheme 4). Conditions had to be developed such that the stereoselective reduction of the 

ketone ent-3, prepared from Boc-D-Ser-OH, provided anti product 4b instead of the previously obtained syn 

product 4a. After investigation of several reductants (DIBAL-H and LiAlH(OtBu)3)48 and conditions (solvents 

and temperatures), the chelation-controlled reduction of ent-3 was found to be successful using DIBAL-H to 

afford anti-enriched 4b in 79% yield with good stereoselectivity (anti:syn = 87:13). Further conversions, 

including N-methylation and oxidation, were conducted according to the established procedure as that of 9a (see 

Experimental Section), providing the desired (2S,3S)-9b. We herein established the synthetic route for both syn 

and anti diastereomers of 9 by simply switching the reductants for the phenylketone 3. 

 

Scheme 4. Synthesis of (2S,3S)-Fmoc-MePhe(3-OTBS)-OH (9b) 

 
 

The synthesis of the revised structure of asperterrestide A (1b) was carried out as illustrated in Scheme 5. In 
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elongation. Exposure of the β-hydroxyl group would not only help the approach of activated carboxylic acid due 

to less-steric bulkiness but also give another pathway, such as O-to-N acyl transfer, as well. The TBS group in 

11b was removed by HF·pyridine to afford the alcohol 13 in 76% yield. After removal of the Fmoc group in 13, 

the coupling between the resulting N-methylamine and Boc-D-allo-Ile-OH was investigated, and the details are 

summarized in Table 1. The best results were obtained using COMU/DIEA, which gave the tetrapeptide 14 in a 

45 % yield along with a small amount of the O-acylated compound 15, after separation by silica gel column 

chromatography followed by preparative TLC (entry 1). The combined yield of 14 and 15 was improved using 

highly reactive acid chlorides generated from triphosgene/2,4,6-collidine, whereas the O-acylation was prior to 

the N-acylation to give both the amide 14 in 28% yield and the ester 15 in 34% yield, respectively (entry 2). The 

facts that the O-to-N acyl transfer from isolated 15 to 14 did not proceed even under harsh conditions (DMSO, 

180 °C under microwave irradiation, 5 min × 6 times) indicated that the amide bond in 14 was directly formed 

without going through the ester 15. DMT-MM49, 50 gave only 14 as the product; however, the yield was very low 

(12%, entry 3). 

Although the yield of the tetrapeptide 14 was disappointing, we continued the synthesis to determine the 

absolute configuration of 1b (Scheme 5). The revised structure of asperterrestide A (1b) was obtained by treating 

14 with TFA/DCM, followed by cyclization of the resulting TFA salt 2b using HATU/DIEA under high dilution 

conditions, and subsequent purification (41% yield over two steps). The epimer at the Ala residue was not 

observed in the crude cyclization product. 

 

Scheme 5. Synthesis of the revised structure of asperterrestide A (1b) 



  

 

Table 1. Peptide elongation from the tripeptide 13 to the tetrapeptide 14 
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Entry Reagents Temp. (°C) Time (h) 
Product a 

(Yield%) 

Ratio of 

14/15 b 

1 c COMU, DIEA rt 26 14 (45), 15 (7) 88:12 

2 d 
triphosgene 

2,4,6-collidine 
rt 19 14 (28), 15 (34) 38:62 

3 e DMT-MM·nH2O 60 48 14 (12) >95:5 
a Isolated yield. b The ratio was determined by crude 1H NMR. c Performed in DMF. d Performed in MeCN. e 

Performed in MeOH. 

 

The 1H and 13C NMR spectroscopic data of synthetic 1b are in good agreement with those of the natural 

compound, except for the chemical shift of concentration-dependent amide proton of the Ala and Ile residues, as 

shown in Figure 6 and Table S2 (Supporting Information). Large 3JH,H coupling constants between 

MePhe(3-OH) Hα / MePhe(3-OH) Hβ (3JH,H = 9.5 Hz) and Ala Hα / Ala NH (3JH,H = 7.9 Hz) were observed in 

synthetic 1b as well as those of the natural 1 (3JH,H = 10.0 and 8.0 Hz, respectively). In addition, NOE 

correlations between MePhe(3-OH) Hβ / MePhe(3-OH) NMe and Ala Hα / Ile NH were observed in 1b, which 

were not found in 1a (see Supporting Information). It should be noted that the spectroscopic data observed in the 

synthetic 1b were fully satisfied with not only those of the natural compound but also those suggested by the 

molecular modeling using the model tetrapeptide 1e. We thus concluded the absolute configuration of natural 1 

to be cyclo-[D-allo-Ile−(2S,3S)-MePhe(3-OH)−Ant−Ala]. 

 



 

Figure 6. (a) Δδ(1H), and (b) Δδ(13C) values of constituting four amino acids in synthetic 1b in CDCl3. Δδ = 

δsynthetic 1b (ppm) – δnatural 1 (ppm). Table S2 (Supporting Information) summarizes NMR spectroscopic data of 1b.  

 

  The cytotoxicity of the synthetic 1a and 1b against three selected cancer cell lines (U937, MOLT4 and A549) 

was evaluated by CellTiter-Glo2.0 assay after 72 h treatments, and their IC50 values are depicted in Table 2. The 

synthetic 1a, the proposed structure of asperterrestide A, did not show sufficient potency against all three cancer 

cell lines, thereby it is clear that the structure of 1a is not that of the natural compound. On the other hand, the 

-1.2
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8
1

1.2

α β γ γ’ δ
C=

O α β C1
C2

/C
6

C3
/C
5 C4

C=
O

N
-M

e C1 C2 C3 C4 C5 C6
C=

O α β
C=

O

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

α β γ γ’ δ
N
H α β

C2
/C
6

C3
/C
5 C4

N
-M

e C3 C4 C5 C6 N
H α β

N
H

Δ
δ(

1 H
) i

n 
pp

m

D-allo-Ile (2S,3S)-
MePhe(3-OH)

Ant Ala

(a)

Δ
δ(

13
C

) i
n 

pp
m

D-allo-Ile (2S,3S)-
MePhe(3-OH)

Ant Ala

(b)



synthetic 1b exhibited potent activity against U937 and MOLT4 cells with the IC50 values of 5.6 and 18.1 µM, 

respectively, which are comparable with those of the natural compound.10 No cytotoxicity of 1b against A549 

cells might also be similar as the value evaluated for the natural compound was not indicated.51 These results 

also suggested that the structure of asperterrestide A should be 1b. It should be noted that the stereochemistry of 

the main chain is essential for the potent activity in the constrained cyclotetrapeptides.  

 

Table 2. IC50 values of cytotoxicity of natural and synthetic asperterrestides against cancer cell lines 

 IC50 (µM)a 

Cancer cell 

line tissue 
Natural 1b 

Synthetic 1a 

(proposed) 

Synthetic 1b 

(revised) 
Mitomycin Cc 

U937 blood 6.4 >20 5.6 0.067 

MOLT4 blood 6.2 >20 18.1 0.031 

A549 lung not indicated >20 >20 0.19 

a The IC50 values were determined by derivation of the best-fit dose response line of triplicate experiments. b 

Data extracted from ref 10. c Mitomycin C was evaluated as a control. 

 

CONCLUSION 

In summary, we have demonstrated the structural revision of natural asperterrestide (1) based on the total 

synthesis and molecular modeling. Suitably protected D-syn-N-methyl-β-hydroxyphenylalanine 9a was prepared 

as a single isomer via the stereoselective reduction of the phenyl ketone 3. The established synthetic route was 

adopted to synthesize L-anti-N-methyl-β-hydroxyphenylalanine 9b by selecting the reductants for the phenyl 

ketone ent-3. During the peptide elongation process to the tetrapeptide 12, the use of the in situ generated amino 

acid chloride of 9a and COMU was found to be useful for the acylation of low-nucleophilic aromatic amine and 

sterically hindered N-methylamine, respectively. We achieved the first total synthesis of the proposed structure 

of asperterrestide (1a) by macrolactamization of the cyclization precursor 2a; however, the discrepancy of the 1H 



and 13C NMR spectroscopic data indicated that the stereochemistry of the natural compound is incorrect from the 

proposed structure of 1a. The absolute configuration of natural asperterrestide A was then deduced to be 

cyclo-[D-allo-Ile–(2S,3S)-MePhe(3-OH)–Ant–Ala] (1b) or cyclo-[D-allo-Ile–(2S,3S)-MePhe(3-OH)–Ant–D-Ala] 

(1c) based on the reexamination of the reported HPLC analysis of acid hydrolysates of the natural product and 

the analysis of NMR spectroscopic data of synthetic 1a. We next conducted the molecular modeling of 

structurally simplified D-Val-containing asperterrestides 1d-1f on the MacroModel program to narrow down the 

putative candidates of natural asperterrestide A. Comparison between synthetic 1a and corresponding 1d 

revealed that 3JH,H coupling constants and NOE correlations observed are in good agreement with those 

calculated in the lowest-energy conformer of the corresponding model tetrapeptide. Because the theoretical 

values of L-Ala-containing 1e are more consistent with those observed in the natural 1 than D-Ala-containing 1f, 

we estimated the stereochemistry of natural asperterrestide A to be corresponding 1b. The synthesis of 1b was 

then performed to validate our speculation according to the established synthetic procedures of 1a. In contrast to 

the synthesis of the tetrapeptide 12, the anti-configuration of the MePhe(3-OTBS) residue was revealed to 

interrupt the acylation of the N-methylamine by the steric repulsion of the TBS group. Thus, the desired 

tetrapeptide 14 was provided after removal of the TBS group in 11b. We accomplished the total synthesis of the 

revised structure of asperterrestide A (1b) by the deprotection followed by macrolactamization, and the 1H and 

13C NMR spectroscopic data of synthetic 1b are identical with those of natural 1. Therefore, we concluded the 

absolute configuration of natural asperterrestide A to be cyclo-[D-allo-Ile−(2S,3S)-MePhe(3-OH)−Ant−Ala]. It is 

noteworthy that the 3JH,H coupling constant and NOE observation of 1b were fully satisfied with not only the 

reported data of the natural 1 but the results obtained by the molecular modeling of the model cyclotetrapeptide 

1e as well. These results strongly suggest that molecular modeling is an efficient and reliable tool to predict 

three-dimensional structures of conformationally constrained cyclotetrapeptides. The evaluation of cytotoxicity 



of synthetic 1a and 1b against three selected cancer cell lines revealed that the stereochemistry of the main chain 

is important for the potent activity. A structure-activity relationship study based on the three-dimensional 

structure of 1b and its derivatives is underway. 

 

EXPERIMENTAL SECTION 

General Techniques. All commercially available reagents were purchased from commercial suppliers, and 

used as received. Dry THF and CH2Cl2 (Kanto Chemical Co.) were obtained by passing commercially available 

pre-dried, oxygen-free formulations through activated alumina column. All reactions in solution-phase were 

monitored by thin-layer chromatography (TLC) carried out on Merck silica gel plates (0.2 mm, 60F-254) with 

UV light, and visualized by p-anisaldehyde H2SO4–EtOH solution or phosphomolybdic acid–EtOH solution or 

ninhydrin–AcOH–1-BuOH solution. Silica gel 60N (Kanto Chemical Co. 100–210 µm) was used for column 

chromatography, and Merck silica gel plate (2.0 mm, 60F-254) was used for preparative thin-layer 

chromatography. 1H NMR spectra (400 and 600 MHz) and 13C NMR spectra (100 and 150 MHz) were recorded 

on JEOL JNM-AL400 and JEOL JNM-ECA600 spectrometers in the indicated solvent. Chemical shifts (δ) are 

reported in units parts per million (ppm) relative to the signal for internal TMS (0.00 ppm for 1H) for solutions in 

CDCl3. NMR spectral data are reported as follows: chloroform (7.26 ppm for 1H) or chloroform-d (77.0 ppm for 

13C), and dimethyl sulfoxide (2.50 ppm for 1H) or dimethyl sulfoxide-d6 (39.5 ppm for 13C) when internal 

standard is not indicated. Multiplicities are reported by the following abbreviations: s (singlet), d (doublet), t 

(triplet), q (quartet), quin (quintet), m (multiplet), dd (double doublet), dt (double triplet), dq (double quartet), td 

(triple doublet), brs (broad singlet), brd (broad doublet) and J (coupling constants in Hertz). High-resolution 

mass spectra were measured on Thermo Scientific™ Exactive™ Plus Orbitrap Mass Spectrometer (for ESI). IR 

spectra were recorded on a JASCO FTIR-4100. Only the strongest and/or structurally important absorption are 



reported as the IR data afforded in wavenumbers (cm−1). Optical rotations were measured on a JASCO P-1010 

polarimeter. Melting points were measured with Round Science Inc. RFS-10, and are not corrected. Analytical 

HPLC was performed using Daicel Chiralpak OD-H. 

Fmoc-Ant-OH. To a suspension of H-Ant-OH (3.50 g, 25.5 mmol) in dioxane (80 mL) were added a solution 

of Na2CO3 (13.5 g, 128 mmol) in water (16 mL) and FmocCl (7.26 g, 28.1 mmol) at 0 °C. After being stirred at 

room temperature for 23 h, the reaction mixture was concentrated in vacuo. The aqueous layer was washed with 

Et2O, acidified with 3 M aqueous HCl until pH 2, and extracted three times with EtOAc. The combined organic 

layers were washed with brine, dried over MgSO4, and filtered. The filtrate was concentrated in vacuo, and the 

resulting residue was suspended in Et2O. The precipitate was filtered, washed with Et2O, and dried under 

vacuum to afford Fmoc-Ant-OH (7.13 g, 78%) as a white solid. mp 188–189 °C; 1H NMR (400 MHz, 

DMSO-d6) δ 12.0 (brs, 1H), 8.11 (d, 1H, J = 8.1 Hz), 7.96 (d, 1H, J = 7.7 Hz), 7.91 (d, 2H, J = 7.4 Hz), 7.68 (d, 

2H, J = 7.4 Hz), 7.40–7.46 (m, 3H), 7.34 (t, 2H, J = 7.4 Hz), 7.02 (t, 1H, J = 7.7 Hz), 4.44 (d, 2H, J = 4.4 Hz), 

4.33 (t, 1H, J = 4.4 Hz); 13C{1H} NMR (100 MHz, DMSO-d6) δ 170.0, 152.8, 143.7, 140.74, 140.73, 132.7, 

131.3, 127.7, 127.1, 125.0, 121.4, 120.2, 118.8, 117.8, 66.1, 46.5; IR (neat) 2948, 1738, 1665, 1586, 1523, 1211 

cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C22H18NO4 360.1230; Found 360.1229. 

tert-Butyl (S)-(3-((tert-butyldimethylsilyl)oxy)-1-oxo-1-phenylpropan-2-yl)-carbamate (3).26 To a solution of 

Boc-Ser-OH (5.00 g, 24.5 mmol) in dry CH2Cl2 (80 mL) were added MeNH(OMe)·HCl, (2.39 g, 24.5 mmol), 

NMM (2.8 mL, 25.7 mmol) and EDCI·HCl (4.74 g, 24.8 mmol) at −15 °C under an argon atmosphere. After 

being stirred at the same temperature for 2 h, the reaction mixture was quenched with 1 M aqueous HCl. The 

organic layer was separated, and the aqueous layer was extracted with CH2Cl2. The combined organic layers 

were washed with saturated aqueous NaHCO3 and brine, dried over MgSO4, and filtered. The filtrate was 

concentrated in vacuo, and the resulting residue was suspended in hexane. The precipitate was filtered, washed 



with hexane, and dried under vacuum to afford the Weinreb amide (5.43 g, 89%) as a white solid.  

To a solution of the alcohol (4.80 g, 19.3 mmol) in dry CH2Cl2 (60 mL) were added imidazole (2.63 g, 38.6 

mmol) and TBSCl (3.21 g, 21.3 mmol) at 0 °C under an argon atmosphere. After being stirred at room 

temperature for 1.5 h, the reaction mixture was quenched with water at 0 °C. The organic layer was separated, 

washed three times with 10% aqueous citric acid, saturated aqueous NaHCO3 and brine, dried over MgSO4, and 

filtered. The filtrate was concentrated in vacuo, and the resulting residue was purified by column 

chromatography on silica gel (eluted with hexane/EtOAc = 19:1) to afford the TBS ether (6.95 g, 99%) as a 

yellowish oil.  

A solution of PhMgBr (1.0 M in THF) was prepared from PhBr (5.5 mL, 52.8 mmol), Mg tuning (2.57 g, 106 

mmol), catalytic amount of I2, and dry THF (53 mL). To a solution of the Weinreb amide (6.00 g, 16.5 mmol) in 

dry THF (80 mL) was added above solution of PhMgBr dropwise at 0 °C under an argon atmosphere. After 

being stirred at room temperature for 3 h, the reaction mixture was quenched with 1 M aqueous HCl at 0 °C. The 

organic layer was separated, and the aqueous layer was extracted with EtOAc. The combined organic layers 

were washed with brine, dried over Na2SO4, and filtered. The filtrate was concentrated in vacuo, and the 

resulting residue was purified by column chromatography on silica gel (eluted with hexane/EtOAc = 19:1) to 

afford the phenyl ketone 3 (4.89 g, 78%) as a yellowish oil. The spectroscopic data of 3 were in good agreement 

with those reported in the literature.30 [α]28
D +37 (c 1.0, CHCl3). 

tert-Butyl ((1S,2S)-3-((tert-butyldimethylsilyl)oxy)-1-hydroxy-1-phenylpropan-2-yl)carbamate (4a). To a 

solution of the ketone 3 (2.00 g, 5.27 mmol) in dry THF (20 mL) was added a solution of L-Selectride (1.0 M in 

THF, 11.6 mL, 11.6 mmol) dropwise at −78 °C under an argon atmosphere. After being stirred at the same 

temperature for 2 h, the reaction mixture was quenched with 1 M aqueous Rochelle salt at 0 °C. The mixture was 

stirred at room temperature. The organic layer was separated, and the aqueous layer was extracted twice with 



EtOAc. The combined organic layers were washed with saturated aqueous NaHCO3 and brine, dried over 

Na2SO4, and filtered. The filtrate was concentrated in vacuo, and the resulting residue was purified by column 

chromatography on silica gel (eluted with hexane/EtOAc = 19:1) to afford the alcohol 4a (1.73 g, 86%, dr 89:11) 

as a yellowish oil. The diastereomeric ratio of 4a was determined by chiral column OD-H (eluted with 

hexane/iPrOH = 9:1; flow rate: 0.5 mL/min; retention time: 7.8 min for C1 diastereomer of 4a, 8.3 min for 4a). 

[α]28
D +38 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.24–7.37 (m, 5H), 5.16 (d, 1H, J = 6.4 Hz), 5.00 (d, 

1H, J = 3.2 Hz), 3.66–3.84 (m, 4H), 1.37 (s, 9H), 0.93 (s, 9H), 0.08 (s, 6H); 13C{1H} NMR (100 MHz, CDCl3) δ 

156.2, 141.2, 128.2, 127.5, 126.1, 79.6, 74.8, 64.9, 56.5, 28.3, 25.8, 18.6, −5.57, −5.60; IR (neat) 3443, 2955, 

2929, 1696, 1497, 1171, 838 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C20H36NO4Si 382.2408; Found 

382.2405. 

tert-Butyl ((5S,6S)-2,2,3,3,9,9,10,10-octamethyl-5-phenyl-4,8-dioxa-3,9-disila-undecan-6-yl)-carbamate (5a). 

To a solution of the alcohol 4a (1.60 g, 4.19 mmol) in DMF (20 mL) were added imidazole (856 mg, 12.6 mmol), 

DMAP (512 mg, 4.19 mmol) and TBSCl (948 mg, 6.29 mmol) at 0 °C under an argon atmosphere. After being 

stirred at 40 °C for 23 h, the reaction mixture was quenched with water. The aqueous layer was extracted twice 

with Et2O. The combined organic layers were washed three times with brine, dried over Na2SO4, and filtered. 

The filtrate was concentrated in vacuo, and the resulting residue was purified by column chromatography on 

silica gel (eluted with hexane/EtOAc = 29:1) to afford the TBS ether 5a (1.53 g, 73%) as a yellowish oil. [α]24
D 

+37 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, 4:1 rotamer mixture) δ 7.20–7.33 (m, 5.0H), 5.01 (d, 1.0H, J = 

2.7 Hz), 4.83 (d, 0.8H, J = 9.3 Hz), 4.66 (d, 0.2H, J = 8.8 Hz), 3.64–3.70 (m, 0.8H), 3.49–3.59 (m, 2.2H), 1.34 (s, 

7.2H), 1.21 (s, 1.8H), 0.93 (s, 9.0H), 0.90 (s, 9.0H), 0.08 (s, 3.0H), 0.07 (s, 3.0H), 0.05 (s, 3.0H), −0.15 (s, 3.0H); 

13C{1H} NMR (100 MHz, CDCl3, 4:1 rotamer mixture) δ 155.5, 142.7, 142.5, 127.9, 127.1, 126.3, 79.3, 78.9, 

72.0, 71.5, 62.2, 61.8, 59.9, 58.3, 28.4, 28.0, 25.9, 18.2, 18.1, −4.6, −5.2, −5.3, −5.4; IR (neat) 3445, 1954, 1929, 



1721, 1492, 1101, 838 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C26H50NO4Si2 496.3273; Found 

496.3272. 

tert-Butyl methyl((5S,6S)-2,2,3,3,9,9,10,10-octamethyl-5-phenyl-4,8-dioxa-3,9-disilaundecan-6-yl)-carbamate 

(6a). To a solution of the amine 5a (1.40 g, 2.82 mmol) in dry THF (15 mL) were added MeI (1.4 mL, 22.6 

mmol) and NaH (60% in mineral, 338 mg, 8.46 mmol) at 0 °C under an argon atmosphere, and the mixture was 

stirred until H2 evolution was completed. Then, same amount of MeI (1.4 mL, 22.6 mmol) and NaH (60% in 

mineral, 338 mg, 8.46 mmol) were added to above mixture at 0 °C. After being stirred at room temperature for 

24 h, the reaction was quenched with water. The organic layer was separated, and the aqueous layer was 

extracted twice with Et2O. The combined organic layers were washed with brine, dried over Na2SO4, and filtered. 

The filtrate was concentrated in vacuo, and the resulting residue was purified by column chromatography on 

silica gel (eluted with hexane/EtOAc = 19:1) to afford the N-methylamine 6a (1.18 g, 82%) as a colorless oil, 

which was solidified under vacuum. mp 56–57 °C; [α]24
D +43 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, 3:2 

rotamer mixture) δ 7.21–7.32 (m, 5.0H), 4.94 (brs, 0.6H), 4.90 (d, 0.4H, J = 4.8 Hz), 4.17 (brs, 0.6H), 3.58–3.77 

(m, 2.4H), 2.92 (s, 1.8H), 2.91 (s, 1.2H), 1.38 (s, 3.6H), 1.18 (s, 5.4H), 0.89 (s, 5.4H), 0.88 (s, 5.4H), 0.85 (s, 

7.2H), 0.03 (s, 7.2H), −0.04 (s, 1.8H), −0.26 (s, 1.8H), −0.32 (s, 1.2H); 13C{1H} NMR (100 MHz, CDCl3, 3:2 

rotamer mixture) δ 156.0, 142.6, 142.5, 128.00, 127.97, 127.4, 127.2, 127.0, 126.6, 78.9, 78.8, 74.5, 73.4, 62.2, 

61.2, 28.4, 28.1, 25.8, 25.7, 18.03, 18.01, 17.9, −4.6, −4.7, −5.31, −5.38, −5.42, −5.48, −5.54, −5.6; IR (neat) 

2955, 2929, 1697, 1152, 837 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ calcd for C27H52NO4Si2 510.3429; found 

510.3425.  

(9H-Fluoren-9-yl)methyl 

methyl((5S,6S)-2,2,3,3,9,9,10,10-octamethyl-5-phenyl-4,8-dioxa-3,9-disila-undecan-6-yl)carbamate (7a). To a 

solution of the N-Boc amine 6a (1.10 g, 2.16 mmol) in dry CH2Cl2 (15 mL) were added 2,6-lutidine (2.0 mL, 



17.3 mmol) and TMSOTf (1.6 mL, 8.63 mmol) at 0 °C under an argon atmosphere. After being stirred at room 

temperature for 40 min, the reaction mixture was quenched with brine and MeOH at 0 °C. The organic layer was 

separated, and the aqueous layer was extracted twice with CH2Cl2. The combined organic layers were washed 

with 10% aqueous citric acid and brine, dried over Na2SO4, and filtered. The filtrate was concentrated in vacuo, 

and the crude amine was used for next reaction without further purification. 

To a solution of the crude amine in dry THF (8.0 mL) were added saturated aqueous NaHCO3 (8.0 mL) and 

FmocOSu (729 mg, 2.16 mmol, 1.0 equiv) at 0 °C. After being stirred at room temperature for 17 h, the reaction 

mixture was quenched with 10% aqueous citric acid. The aqueous layer was extracted with Et2O. The organic 

layer was washed with brine, dried over Na2SO4, and filtered. The filtrate was concentrated in vacuo, and the 

resulting residue was purified by column chromatography on silica gel (eluted with hexane/EtOAc = 29:1) to 

afford the N-Fmoc amine 7a (1.32 g, 97% in 2 steps) as a colorless oil. [α]25
D +41 (c 1.0, CHCl3); 1H NMR (400 

MHz, CDCl3, 1:1 rotamer mixture) δ 7.74–7.78 (m, 2.0H), 7.58–7.62 (m, 1.5H), 7.52 (d, 0.5H, J = 7.1 Hz), 

7.23–7.42 (m, 9.0H), 5.02 (d, 0.5H, J = 6.8 Hz), 4.89 (brs, 0.5H), 4.04–4.37 (m, 4.0H), 3.60–3.66 (m, 2.0H), 

3.05 (s, 3.0H), 0.85–0.89 (m, 18.0H), 0.03 (s, 3.0H), 0.04 (brs, 3.0H), −0.02 (s, 3.0H), −0.27 (brs, 1.5H), −0.28 

(s, 1.5H); 13C{1H} NMR (100 MHz, CDCl3, 1:1 rotamer mixture) δ 157.0, 144.5, 144.4, 144.2, 144.0, 142.2, 

141.3, 141.2, 128.13, 128.07, 127.6, 127.5, 126.94, 126.92, 126.8, 125.19, 125.15, 125.0, 119.9, 73.8, 73.1, 67.2, 

62.9, 61.2, 60.9, 47.34, 47.30, 25.8, 25.7, 18.1, 17.9, −4.6, −5.3, −5.6; IR (neat) 2953, 2928, 1700, 1254, 1100, 

836 cm−1; HRMS (ESI-TOF) m/z: [M+Na]+ Calcd for C37H53NO4Si2Na 654.3405; Found 654.3403. 

(9H-Fluoren-9-yl)methyl 

((1S,2S)-1-((tert-butyldimethylsilyl)oxy)-3-hydroxy-1-phenylpropan-2-yl)(methyl)carbamate (8a). To a solution 

of the TBS ether 7a (1.10 g, 1.74 mmol) in dry THF (15 mL) were added pyridine (1.4 mL, 17.4 mmol) and 

HF·pyridine (950 µL, 52.2 mmol) at 0 °C under an argon atmosphere, and the mixture was stirred for 30 min at 



the same temperature. After being stirred at room temperature for 4 h, the reaction mixture was poured into 

saturated aqueous NaHCO3 at 0 °C. The aqueous layer was extracted three times with EtOAc. The combined 

organic layers were washed with 10% aqueous citric acid and brine, dried over Na2SO4, and filtered. The filtrate 

was concentrated in vacuo, and the resulting residue was purified by flash column chromatography on silica gel 

(eluted with hexane/EtOAc = 4:1) to afford the alcohol 8a (575 mg, 64%) as a white amorphous solid and a 

mixture of 8a and its diastereomer (150 mg, 17%) as a white amorphous solid. Rf: 0.23 for 8a, 0.29 for C1 

diastereomer of 8a (hexane/EtOAc = 2:1); mp 55–56 °C; [α]25
D +44 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, 

3:2 rotamer mixture) δ 7.76–7.79 (m, 2.0H), 7.57–7.60 (m, 2.0H), 7.20–7.60 (m, 8.6H), 7.12 (brs, 0.4H,), 5.06 (d, 

0.6H, J = 6.8 Hz), 4.64 (brs, 0.4H), 4.44 (dd, 0.6H, J = 10.4, 6.8 Hz), 4.34 (brs, 0.4H), 4.26 (dd, 0.6H, J = 10.4, 

6.8 Hz), 4.18 (t, 1.0H, J = 6.8 Hz), 4.11 (brs, 0.4H), 3.88 (brs, 0.4H), 3.55–3.66 (m, 1.6H), 3.43 (brs, 0.4H), 

2.94–3.00 (m, 3.6H), 0.84 (s, 5.4H), 0.80 (brs, 3.6H), −0.02 (s, 3H), −0.30 (s, 1.8H), −0.36 (brs, 1.2H); 13C{1H} 

NMR (100 MHz, CDCl3, 3:2 rotamer mixture) δ 157.3, 144.1, 143.9, 141.8, 141.6, 141.4, 141.3, 141.23, 141.17, 

128.20, 128.15, 127.74, 127.71, 127.62, 127.59, 127.14, 127.0, 126.9, 126.7, 126.5, 125.1, 125.0, 119.9, 73.9, 

73.2, 67.4, 61.1, 60.2, 47.24, 47.20, 25.7, 25.6, 17.84, 17.80, −4.8, −5.2; IR (neat) 3444, 2954, 2929, 1684, 1451, 

758 cm−1; HRMS (ESI-TOF) m/z: [M+Na]+ Calcd for C31H39NO4SiNa 540.2541; Found 540.2538. 

(2R,3S)-Fmoc-MePhe(3-OTBS)-OH (9a). To a solution of the alcohol 8a (500 mg, 966 µmol) in dry MeCN 

(4.0 mL) and pH 6.8 buffer (4.0 mL) were added TEMPO (30.2 mg, 193 µmol), NaClO2 (80% grade, 328 mg, 

2.90 mmol) and 5% aqueous NaOCl (287 µL, 193 µmol) at room temperature. After being stirred at the same 

temperature for 1 h, the reaction mixture was quenched with 10% aqueous Na2S2O3, and acidified with 10% 

aqueous citric acid. The aqueous layer was extracted three times with EtOAc. The combined organic layers were 

washed with brine, dried over Na2SO4, and filtered. The filtrate was concentrated in vacuo, and the resulting 

residue was recrystallized from Et2O/hexane to afford the carboxylic acid 9a (461 mg, 90%) as a white solid. mp 



167–168 °C; [α]25
D +40 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, 2:1 rotamer mixture) δ 7.72–7.76 (m, 2.0H), 

7.23–7.44 (m, 11.0H), 5.50 (d, 0.7H, J = 4.6 Hz), 5.33 (d, 0.3H, J = 4.9 Hz), 5.21 (d, 0.7H, J = 4.6 Hz), 4.93 (d, 

0.3H, J = 4.9 Hz), 4.24–4.32 (m, 1.0H), 4.00–4.16 (m, 2.0H), 3.15 (s, 2.0H), 3.10 (s, 1.0H), 0.89 (s, 6.0H), 0.85 

(s, 3.0H), 0.07 (s, 2.0H), 0.04 (s, 1.0H), −0.18 (s, 2.0H), −0.25 (s, 1.0H); 13C{1H} NMR (100 MHz, CDCl3, 2:1 

rotamer mixture) δ 174.3, 174.2, 157.2, 156.1, 144.1, 143.7, 141.3, 141.2, 140.3, 140.1, 128.3, 128.2, 128.0, 

127.7, 127.6, 127.1, 127.02, 126.98, 126.7, 126.4, 125.2, 125.0, 124.93, 124.86, 119.9, 75.0, 74.8, 68.0, 67.7, 

65.0, 64.3, 47.12, 47.06, 25.71, 25.66, 18.0, 17.9, −4.5, −4.6, −5.48, −5.51; IR (neat) 3021, 2954, 2930, 1703, 

1253, 758 cm−1; HRMS (ESI-TOF) m/z: [M+Na]+ Calcd for C31H37NO5SiNa 554.2333; Found 554.2328. 

Fmoc-Ant–D-Ala-OtBu (10). To a solution of H-D-Ala-OtBu·HCl (1.00 g, 5.50 mmol) in dry CH2Cl2 (22 mL) 

were added DIEA (1.1 mL, 6.06 mmol), Fmoc-Ant-OH (2.18 g, 6.06 mmol), HOBt (819 mg, 6.06 mmol) and 

EDCI·HCl (1.16 g, 6.06 mmol) at 0 °C under an argon atmosphere. After being stirred at room temperature for 

16 h, the reaction mixture was quenched with 1 M aqueous HCl. The organic layer was separated, and the 

aqueous layer was extracted twice with EtOAc. The combined organic layers were washed with saturated 

aqueous NaHCO3 and brine, dried over MgSO4, and filtered. The filtrate was concentrated in vacuo, and the 

resulting residue was purified by column chromatography on silica gel (eluted with hexane/EtOAc = 6:1) to 

afford the dipeptide 10 (2.36 g, 88%) as a white amorphous solid. mp 122–123 °C; [α]27
D −8.1 (c 1.0, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 10.7 (s, 1H), 8.35 (d, 1H, J = 7.9 Hz), 7.76 (d, 2H, J = 7.4 Hz), 7.66 (d, 2H, J = 

7.4 Hz), 7.55 (dd, 1H, J = 7.9, 1.3 Hz), 7.46 (dt, 1H, J = 7.9, 1.3 Hz), 7.40 (t, 2H, J = 7.4 Hz), 7.32 (t, 2H, J = 7.4 

Hz), 7.04 (d, 1H, J = 7.9 Hz), 6.91 (d, 1H, J = 6.9 Hz), 4.66 (quin, 1H, J = 6.9 Hz), 4.42 (d, 2H, J = 7.4 Hz), 4.30 

(t, 1H, J = 7.4 Hz), 1.53 (d, 3H, J = 6.9 Hz), 1.51 (s, 9H); 13C{1H} NMR (100 MHz, CDCl3) δ 172.1, 168.2, 

153.6, 143.9, 141.2, 139.9, 132.8, 127.7, 127.1, 126.8, 125.3, 122.0, 120.0, 119.9, 119.5, 82.5, 67.3, 49.1, 47.0, 

27.9, 18.6; IR (neat) 3336, 2979, 1733, 1646, 1590, 1522, 1450, 1215, 757 cm−1; HRMS (ESI-TOF) m/z: 



[M+Na]+ Calcd for C29H30N2O5Na 509.2047; Found 509.2036. 

Fmoc-(2R,3S)-MePhe(3-OTBS)–Ant–D-Ala-OtBu (11a). To a solution of the N-Fmoc amine 10 (150 mg, 308 

µmol) in dry MeCN (2.4 mL) was added Et2NH (0.6 mL) at 0 °C under an argon atmosphere. After being stirred 

at room temperature for 2.5 h, the reaction mixture was concentrated in vacuo. The resulting residue was 

azeotroped three times with toluene, and dried under vacuum. The crude amine was used for next reaction 

without further purification. 

To a solution of the acid 9a (246 mg, 462 µmol) in dry MeCN (1.5 mL) were added triphosgene (45.7 mg, 154 

µmol) and 2,4,6-collidine (124 µL, 924 µmol) at 0 °C under an argon atmosphere. After being stirred at the same 

temperature for 5 min, a suspension of the crude amine in dry MeCN (1.5 mL) was added to the above mixture at 

0 °C. After being stirred at room temperature for 13 h, the reaction mixture was quenched with 10% aqueous 

citric acid, and concentrated in vacuo. The aqueous layer was extracted twice with EtOAc. The combined 

organic layers were washed with 10% aqueous citric acid, saturated aqueous NaHCO3 and brine, dried over 

Na2SO4, and filtered. The filtrate was concentrated in vacuo, and the resulting residue was purified by column 

chromatography on silica gel (eluted with hexane/EtOAc = 6:1) to give desired product containing a small 

amount of impurities. Further purification by column chromatography on silica gel (eluted with toluene/EtOAc = 

14:1) afforded the tripeptide 11a (215 mg, 90% in 2 steps) as a white amorphous solid. mp 88–89 °C; [α]23
D +63 

(c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, 3:2 rotamer mixture) δ 11.72 (s, 0.4H), 11.71 (s, 0.6H), 8.65 (d, 

0.6H, J = 8.3 Hz), 8.61 (d, 0.4H, J = 8.3 Hz), 7.72–7.78 (m, 2H), 7.66 (d, 0.8H, J = 7.3 Hz), 7.17–7.56 (m, 

12.2H), 7.05–7.11 (m, 1.0H), 6.81 (d, 0.6H, J = 7.0 Hz), 6.78 (d, 0.4H, J = 7.0 Hz), 5.72 (d, 0.6H, J = 4.7 Hz), 

5.57 (d, 0.4H, J = 5.4 Hz), 5.26 (d, 0.6H, J = 4.7 Hz), 5.04 (d, 0.4H, J = 5.4 Hz), 4.46 (quin, 0.4H, J = 7.0 Hz), 

4.17–4.40 (m, 3.2H), 4.08 (dd, 0.4H, J = 10.1, 7.0 Hz), 3.37 (s, 1.8H), 3.22 (s, 1.2H), 1.45 (s, 3.6H), 1.44 (s, 

5.4H), 1.21 (d, 3H, J = 7.0 Hz), 0.88 (s, 5.4H), 0.84 (s, 3.6H), 0.13 (s, 1.8H), 0.10 (s, 1.2H), −0.15 (s, 1.8H), 



−0.20 (s, 1.2H); 13C{1H} NMR (100 MHz, CDCl3, 3:2 rotamer mixture) δ 172.2, 167.8, 167.7, 167.6, 167.4, 

157.3, 156.3, 144.3, 144.2, 144.10, 144.06, 141.5, 141.4, 141.1, 139.41, 139.35, 132.71, 132.68, 128.2, 128.0, 

127.6, 127.53, 127.52, 127.49, 127.46, 126.98, 126.96, 126.94, 126.91, 126.6, 126.5, 125.4, 125.3, 125.2, 125.1, 

123.0, 122.9, 121.12, 121.09, 119.9, 119.80, 119.79, 119.7, 82.4, 82.3, 74.0, 73.4, 68.1, 66.8, 66.7, 48.9, 48.8, 

47.2, 47.1, 33.5, 27.9, 25.8, 25.7, 18.41, 18.37, 18.0, 17.9, −4.5, −4.6, −5.2, −5.3; IR (neat) 3339, 2954, 2929, 

1693, 1518, 1448, 114, 757 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C45H56N3O7Si 778.3882; Found 

778.3880. 

Boc-D-allo-Ile–(2R,3S)-MePhe(3-OTBS)–Ant–D-Ala-OtBu (12). To a solution of the N-Fmoc amine 11a (150 

mg, 193 µmol) in dry MeCN (1.6 mL) was added Et2NH (0.4 mL) at 0 °C under an argon atmosphere. After 

being stirred at room temperature for 2.5 h, the reaction mixture was concentrated in vacuo. The resulting 

residue was azeotroped three times with toluene, and dried under vacuum. The crude amine was used for next 

reaction without further purification.  

To a solution of the crude amine in dry CH2Cl2 (2.0 mL) were added Boc-D-allo-Ile-OH (66.9 mg, 289 µmol), 

DIEA (101 µL, 579 µmol) and COMU (124 mg, 289 µmol) at 0 °C under an argon atmosphere. After being 

stirred at room temperature for 23 h, the reaction mixture was quenched with 10% aqueous citric acid. The 

organic layer was separated, and the aqueous layer was extracted three times with EtOAc. The combined organic 

layers were washed with saturated aqueous NaHCO3 and brine, dried over Na2SO4, and filtered. The filtrate was 

concentrated in vacuo, and the resulting residue was purified by column chromatography on silica gel (eluted 

with hexane/EtOAc = 6/1) to give desired product containing a small amount of impurities. Further purification 

by column chromatography on silica gel (eluted with toluene/EtOAc = 9:1) afforded the tetrapeptide 12 (85.0 mg, 

57% in 2 steps) as a white amorphous solid. mp 84–85 °C; [α]24
D +80 (c 1.0, CHCl3); 1H NMR (400 MHz, 

CDCl3, 3:1 rotamer mixture) δ 11.7 (s, 0.25H), 11.4 (s, 0.75H), 8.71 (d, 0.25H, J = 8.3 Hz), 8.63 (d, 0.75H, J = 



8.3 Hz), 7.17–7.59 (m, 7.0H), 7.03–7.10 (m, 1.25H), 6.80 (d, 0.75H, J = 7.1 Hz), 5.77 (d, 0.25H, J = 3.2 Hz), 

5.70 (d, 0.75H, J = 4.4 Hz), 5.61 (d, 0.75H, J = 4.4 Hz), 5.53 (d, 0.25H, J = 10.3 Hz), 4.90 (d, 0.75H, J = 10.4 

Hz), 4.70 (d, 0.25H, J = 3.2 Hz), 4.52–4.66 (m, 1.75H), 3.67 (dd, 0.25H, J = 10.3, 6.6 Hz), 3.37 (s, 2.25H), 3.15 

(s, 0.75H), 1.98–2.04 (m, 0.75H), 1.64–1.71 (m, 1.0H), 1.42–1.51 (m, 21.0H), 0.97 (t, 2.25H, J = 7.4 Hz), 0.85 (s, 

2.25H), 0.84 (s, 6.75H), 0.62–0.79 (m, 4.0H), 0.50–0.58 (m, 0.25H), 0.13 (s, 0.75H), 0.08 (s, 2.25H), −0.14 (s, 

0.75H), −0.19 (s, 2.25H); 13C{1H} NMR (100 MHz, CDCl3, 3:1 rotamer mixture) δ 173.6, 172.9, 172.3, 172.1, 

170.0, 167.7, 167.5, 166.8, 155.44, 155.41, 141.5, 141.2, 140.0, 139.4, 133.1, 132.8, 128.4, 128.0, 127.6, 127.5, 

126.73, 126.67, 126.61, 126.5, 122.94, 122.86, 121.3, 121.0, 119.8, 118.8, 82.7, 82.5, 79.3, 28.9, 74.34, 74.26, 

67.3, 64.0, 53.7, 52.8, 48.9, 48.8, 36.8, 36.5, 34.4, 34.3, 28.4, 27.9, 27.0, 26.6, 25.8, 18.8, 18.6, 18.02, 17.96, 

14.2, 13.6, 11.9, –4.6, –5.3; IR (neat) 3346, 2961, 2931, 1711, 1649, 1517, 1449, 1158, 756 cm−1; HRMS 

(ESI-TOF) m/z: [M+Na]+ Calcd for C41H64N4O8SiNa 791.4386; Found 791.4377. 

The proposed structure of asperterrestide A (1a). To a solution of the N-Boc amine 12 (60.0 mg, 78.0 µmol) 

in dry CH2Cl2 (0.5 mL) was added TFA (0.5 mL) at 0 °C under an argon atmosphere. After being stirred at room 

temperature for 11 h, the reaction mixture was concentrated in vacuo. The resulting residue was azeotroped three 

times with toluene, and dried under vacuum. The crude amine·TFA salt 2a was used for next reaction without 

further purification.   

To a solution of the crude linear tetrapeptide 2a in dry CH2Cl2 (78 mL) were added DIEA (136 µL, 780 µmol) 

and HATU (89.0 mg, 234 µmol) at 0 °C under an argon atmosphere. After being stirred at room temperature for 

22 h, the reaction mixture was quenched with 1 M aqueous HCl, and concentrated in vacuo. The aqueous layer 

was extracted twice with EtOAc. The combined organic layers were washed with 1 M aqueous HCl, saturated 

aqueous NaHCO3 and brine, dried over MgSO4, and filtered. The filtrate was concentrated in vacuo, and CHCl3 

was added to the resulting residue. The suspension was filtered to remove white solid impurities. The filtrate was 



concentrated in vacuo, and the resulting residue was purified by silica gel column chromatography (eluted with 

hexane/EtOAc = 1:1) to give desired product containing a small amount of impurities. Further purification by 

preparative TLC (eluted with toluene/EtOAc = 2:1) afforded the proposed structure of asperterrestide A (1a) 

(13.3 mg, 36% in 2 steps) as a white solid. mp 175–176 °C; [α]23
D +28 (c 0.66, MeOH); 1H NMR (600 MHz, 

CDCl3) δ 9.83 (s, 1H), 8.32 (d, 1H, J = 8.1 Hz), 7.47–7.50 (m, 1H), 7.44 (d, 2H, J = 7.3 Hz), 7.41 (dd, 1H, J = 

7.7, 1.4 Hz), 7.38 (t, 2H, J = 7.3 Hz), 7.31 (t, 1H, J = 7.3 Hz), 7.11 (td, 1H, J = 7.7, 0.9 Hz), 6.92 (brs, 1H), 6.16 

(d, 1H, J = 9.5 Hz), 5.79 (brs, 1H), 4.66 (t, 1H, J = 9.5 Hz), 4.06 (dq, 1H, J = 7.3, 3.8 Hz), 3.94 (brs, 1H), 3.84 (d, 

1H, J = 2.6 Hz), 2.77 (s, 3H), 1.73–1.75 (m, 1H), 1.56–1.61 (m, 1H), 1.40 (d, 3H, J = 7.3 Hz), 1.13–1.18 (m, 1H), 

0.91 (t, 3H, J = 7.4 Hz), 0.87 (d, 3H, J = 6.8 Hz); 13C{1H} NMR (150 MHz, CDCl3) δ 174.9, 172.8, 170.0, 166.5, 

141.2, 136.7, 132.2, 128.6, 127.8, 125.91, 125.88, 123.7, 123.6, 122.9, 72.9, 72.5, 53.8, 53.7, 40.5, 37.3, 25.5, 

16.3, 14.3, 11.1; IR (neat) 3317, 3202, 2963, 1698, 1622, 1516, 1444, 755 cm−1; HRMS (ESI-TOF) m/z: 

[M+Na]+ Calcd for C26H32N4O5Na 503.2265; Found 503.2258. 

tert-Butyl (R)-(3-((tert-butyldimethylsilyl)oxy)-1-oxo-1-phenylpropan-2-yl)-carbamate (ent-3).26 By following 

the procedure described above for 3, the amidation of Boc-D-Ser-OH (4.20 g, 20.5 mmol) afforded the Weinreb 

amide (4.56 g, 90%). The silylation of the alcohol (4.80 g, 19.3 mmol) afforded the TBS ether (7.02 g, quant). 

The 1,2-addition to the Weinreb amide (6.66 g, 18.4 mmol) afforded the phenyl ketone ent-3 (5.98 g, 86%). The 

spectroscopic data of ent-3 were in good agreement with those reported in the literature except for the sign of the 

specific rotation.30 [α]23
D –29 (c 1.1, CHCl3). 

tert-Butyl ((1S,2R)-3-((tert-butyldimethylsilyl)oxy)-1-hydroxy-1-phenylpropan-2-yl)carbamate (4b). To a 

solution of the ketone ent-3 (1.70 g, 4.48 mmol) in dry THF (45 mL) was added a solution of DIBAL-H (1.0 M 

in hexane, 14.8 mL, 14.8 mmol) dropwise at −78 °C under an argon atmosphere. After being at the same 

temperature for 4 h, the reaction mixture was quenched with MeOH at −78 °C and 1 M aqueous Rochelle salt at 



0 °C. The mixture was stirred at room temperature for 4 h. The organic layer was separated, and the aqueous 

layer was extracted twice with EtOAc. The combined organic layers were washed with saturated aqueous 

NaHCO3 and brine, dried over Na2SO4, and filtered. The filtrate was concentrated in vacuo, and the resulting 

residue was purified by column chromatography on silica gel (eluted with hexane/EtOAc = 6:1) to afford the 

alcohol 4b (1.35 g, 79%, dr 87:13) as a colorless oil. The diastereomeric ratio of 4b was determined by chiral 

column OD-H (eluted with Hexane/IPA = 9:1; flow rate: 0.5 mL/min; retention time: 8.0 min for 4b, 8.7 min for 

C1 diastereomer of 4b). [α]24
D −6.0 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.36–7.37 (m, 4H), 7.26–7.30 

(m, 1H), 5.35 (d, 1H, J = 6.8 Hz), 4.93 (dd, 1H, J = 7.8, 3.2 Hz), 4.12 (d, 1H, J = 7.8 Hz), 3.82–3.85 (m, 1H), 

3.67 (brs, 2H), 1.45 (s, 9H), 0.91 (s, 9H), 0.06 (s, 3H) 0.04 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 155.6, 

141.5, 128.3, 127.3, 125.7, 79.5, 76.3, 63.0, 55.2, 28.3, 25.8, 18.1, −5.7; IR (neat) 3444, 3060, 2940, 2888, 2586, 

1697, 1497, 1371, 836 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C20H36NO4Si 382.2408; Found 

382.2399. 

tert-Butyl ((5S,6R)-2,2,3,3,9,9,10,10-octamethyl-5-phenyl-4,8-dioxa-3,9-disila-undecan-6-yl)-carbamate (5b). 

By following the procedure described above for 5a, the silylation of the alcohol 4b (1.35 g, 3.54 mmol) afforded 

the TBS ether 5b (1.67 g, 95%) as a yellowish oil. [α]27
D +9.5 (c 1.0, CHCl3); 1H NMR (400 MHz, CDCl3, 4:1 

rotamer mixture) δ 7.21–7.34 (m, 5.0H), 4.87 (brd, 0.8 H, J = 5.2 Hz), 4.69 (brs, 0.2H), 4.59 (brd, 0.8 H, J = 8.0 

Hz), 4.40 (brs, 0.2H), 3.77–3.82 (m, 1.8H), 3.58 (brs, 0.2H), 3.48–3.56 (m, 1.0H), 1.34 (s, 7.2H), 1.25 (s, 1.8H), 

0.88 (s, 18.0H), 0.01–0.03 (m, 9.0H), −0.19 (s, 3.0H); 13C{1H} NMR (100 MHz, CDCl3, 4:1 rotamer mixture) δ 

155.4, 141.6, 127.9, 127.2, 126.8, 78.8, 73.8, 72.0, 61.0, 58.3, 58.0, 28.3, 28.0, 25.89, 25.87, 25.80, 18.2, 18.1, 

−4.8, −5.2, −5.4, −5.5; IR (neat) 3457, 2955, 2930, 2886, 2858, 1721, 1496, 1173, 837, 777 cm−1; HRMS 

(ESI-TOF) m/z: [M+H]+ Calcd for C26H50NO4Si2 496.3273; Found 496.3260. 

tert-Butyl methyl((5S,6R)-2,2,3,3,9,9,10,10-octamethyl-5-phenyl-4,8-dioxa-3,9-disilaundecan-6-yl)-carbamate 



(6b). By following the procedure described above for 6a, N-methylation of the amine 5b (900 mg, 1.82 mmol) 

afforded the N-methylamine 6b (842 mg, 91%) as a colorless oil. [α]27
D +13 (c 0.85, CHCl3); 1H NMR (400 

MHz, CDCl3, 3:2 rotamer mixture) δ 7.20–7.34 (m, 5.0H), 4.95 (brs, 0.6H), 4.59 (brs, 0.4H), 3.86–4.23 (m, 

3.0H), 2.80 (s, 1.2H), 2.59 (s, 1.8H), 1.34 (s, 5.4H), 1.25 (brs, 3.6H), 0.86 (s, 18.0H), −0.04–0.02 (s, 9.0H), 

−0.27– −0.33 (m, 3.0H); 13C{1H} NMR (100 MHz, CDCl3, 3:2 rotamer mixture) δ 142.5, 127.9, 127.7, 127.5, 

127.2, 126.8, 126.7, 78.7, 74.2, 73.58, 73.57, 65.8, 63.0, 60.6, 60.3, 28.3, 28.2, 25.84, 25.80, 25.74, 25.71, 18.11, 

18.07, 17.99, 17.94, 15.2, −4.62, −4.65, −5.18, −5.24, −5.44, −5.49, −5.51; IR (neat) 2956, 2930, 2889, 2858, 

1695, 1472, 1254, 1157, 1065, 861 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C27H52NO4Si2 510.3429; 

Found 510.3417. 

(9H-Fluoren-9-yl)methyl 

methyl((5S,6R)-2,2,3,3,9,9,10,10-octamethyl-5-phenyl-4,8-dioxa-3,9-disila-undecan-6-yl)carbamate (7b). By 

following the procedure described above for 7a, N-Fmoc protection of the N-Boc amine 6b (754 mg, 1.65 mmol) 

afforded the N-Fmoc amine 7b (758 mg, 65% in 2 steps) as a colorless oil. [α]28
D +8.0 (c 0.82, CHCl3); 1H NMR 

(400 MHz, CDCl3, 3:2 rotamer mixture) δ 7.75–7.77 (m, 2.6H), 7.20–7.45 (m, 9.8H), 7.08 (brs, 0.6H), 5.04 (brs, 

0.6H), 4.53 (brs, 0.4H), 3.60–4.56 (m, 6.0H), 2.87 (s, 1.2H), 2.79 (s, 1.8H), 0.85–0.89 (m, 18.0H), −0.03–0.04 

(m, 9.0H), −0.27 (s, 1.8H), −0.33 (s, 1.2H); 13C{1H} NMR (100 MHz, CDCl3, 3:2 rotamer mixture) δ 144.2, 

144.14, 144.12, 142.3, 141.8, 141.33, 141.27, 141.19, 128.0, 127.9, 127.6, 127.55, 127.50, 127.1, 127.0, 126.91, 

126.90, 126.7, 126.5, 125.22, 125.19, 124.9, 119.9, 119.8, 67.1, 62.8, 60.7, 60.6, 60.1, 48.2, 47.4, 47.1, 25.85, 

25.80, 25.75, 25.71, 18.14, 18.08, 17.98, 17.93, −4.65, −4.73, −5.1, −5.3, −5.5, −5.6; IR (neat) 3065, 3030, 2954, 

2929, 2890, 2857, 1702, 1471, 1254, 1089, 836 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C37H54NO4Si2 

632.3586; Found 632.3570. 

(9H-Fluoren-9-yl)methyl 



((1S,2S)-1-((tert-butyldimethylsilyl)oxy)-3-hydroxy-1-phenylpropan-2-yl)(methyl)carbamate (8b). By following 

the procedure described above for 8a, desilylation of the TBS ether 7b (738 mg, 1.17 mmol) afforded the alcohol 

8b (350 mg, 58%), its diastereomer (46.0 mg, 8%) and a mixture of 8b and its diastereomer (94.0 mg, 16%) as a 

colorless oil, respectively. Rf: 0.29 for 8b, 0.23 for C1 diastereomer of 8b (hexane/EtOAc = 2:1); [α]29
D +8.0 (c 

0.98, CHCl3); 1H NMR (400 MHz, CDCl3, 2:1 rotamer mixture) δ 7.74–7.79 (m, 2.0H), 7.58 (t, 0.7H, J = 8.2 

Hz), 7.15–7.48 (m, 9.6H), 6.86 (d, 0.7H, J = 6.0 Hz), 5.13 (d, 0.7H, J = 8.4 Hz), 4.28–4.56 (m, 2.3H), 4.15–4.18 

(m, 1.0H), 4.04 (brs, 1.3H), 4.39 (dd, 0.5H, J = 7.1, 10.7 Hz), 4.32 (dd, 0.5H, J = 7.1, 10.7 Hz), 4.15–4.19 (m, 

0.6H), 4.04 (brs, 1.0H), 3.62 (brs, 1.3H), 2.88 (brs, 0.7H), 2.71 (brs, 0.7H), 2.56 (s, 2.0H), 0.87 (s, 6.0H), 0.84 (s, 

3.0H), 0.05 (2.0H), −0.11 (s, 1.0H), −0.25 (s, 2.0H), −0.41 (s, 1.0H); 13C{1H} NMR (100 MHz, CDCl3, 2:1 

rotamer mixture) δ 156.8, 144.1, 143.9, 143.8, 142.3, 141.5, 141.3, 128.2, 128.0, 127.7, 127.6, 127.2, 127.1, 

126.98, 126.96, 126.6, 126.4, 125.0, 124.6, 120.1, 120.0, 119.9, 75.2, 73.5, 68.2, 67.3, 66.2, 61.9, 47.5, 47.2, 

35.3, 25.73, 25.71, 18.0, 17.9, −4.7, −4.8, −5.2, −5.3; IR (neat) 3446, 3066, 3034, 2954, 2929, 2891, 2857 1682, 

1451, 1252, 740 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C31H40NO4Si 518.2721; Found 518.2708. 

(2S,3S)-Fmoc-MePhe(3-OTBS)-OH (9b). By following the procedure described above for 9a, the oxidation of 

the alcohol 8b (300 mg, 579 µmol) afforded the carboxylic acid 9b (270 mg, 88%) as a white solid. mp 79–

80 °C; [α]25
D −15 (c 0.97, CHCl3); 1H NMR (400 MHz, CDCl3, 2:1 rotamer mixture) δ 7.72–7.78 (m, 2.0H), 

7.55–7.60 (m, 0.7H), 7.19–7.42 (m, 9.7H), 7.07 (d, 0.7H, J = 6.4 Hz), 5.36 (d, 0.7H, J = 9.0 Hz), 4.90 (d, 0.3H, J 

= 9.6 Hz), 4.66 (brd, 0.3H, J = 8.0 Hz), 4.55 (d, 0.7H, J = 9.0 Hz), 4.47 (dd, 0.3H, J = 10.2, 5.8 Hz), 4.23–4.32 

(m, 1.3H), 4.07–4.17 (m, 1.4H), 2.81 (s, 1.0H), 2.68 (s, 2.0H), 0.84 (s, 6.0H), 0.83 (s, 3.0H), 0.08 (s, 2.0H), 0.02 

(s, 1.0H), −0.24 (s, 2.0H), –0.32 (s, 1.0H); 13C{1H} NMR (100 MHz, CDCl3, 2:1 rotamer mixture) δ 173.9, 

172.8, 156.7, 155.4, 143.9, 143.8, 143.7, 143.6, 141.31, 141.26, 140.2, 139.6, 128.5, 128.4, 128.3, 128.2, 127.67, 

127.63, 127.11, 127.08, 127.06, 126.99, 125.04, 124.97, 124.8, 120.0, 119.9, 73.3, 73.1, 68.0, 67.5, 67.2, 64.4, 



47.1, 46.9, 34.4, 25.6, 17.94, 17.89, −4.6, −5.2, −5.3; IR (neat) 3371, 3065, 2954, 2929, 2895, 2856, 1710, 1681, 

1451, 1252, 1091, 838 cm−1; HRMS (ESI-TOF) m/z: [M+Na]+ Calcd for C31H37NO5SiNa 554.2333; Found 

554.2320. 

Fmoc-Ant–Ala-OtBu (ent-10). By following the procedure described above for 10, the acylation of 

H-Ala-OtBu·HCl (1.00 g, 5.50 mmol) afforded the dipeptide ent-10 (2.55 g, 95%) as a white amorphous solid. 

mp 123–124 °C; [α]25
D +8.2 (c 1.0, CHCl3). 

Fmoc-(2S,3S)-MePhe(3-OTBS)–Ant–Ala-OtBu (11b). By following the procedure described above for 11a. the 

acylation of the N-Fmoc amine ent-10 (274 mg, 563 µmol) afforded the tripeptide 11b (383 mg, 88% in 2 steps) 

as a white amorphous solid. mp 88–89 °C; [α]25
D +22 (c 0.92, CHCl3); 1H NMR (400 MHz, CDCl3, 3:2 rotamer 

mixture) δ 11.7 (s, 0.4H, s), 11.5 (s, 0.6H), 8.69 (d, 1.0H, J = 8.3 Hz), 7.75 (d, 0.8H, J = 7.6 Hz), 7.73 (d, 1.2H, J 

= 7.6 Hz), 7.10–7.63 (m, 14H), 6.89 (d, 0.4H, J = 7.0 Hz), 6.84 (d, 0.6H, J = 7.0 Hz), 5.30 (d, 0.6H, J = 9.3 Hz), 

5.24 (d, 0.4H, J = 9.3 Hz), 5.06 (d, 0.6H, J = 9.3 Hz), 4.94 (d, 0.4H, J = 9.3 Hz), 4.62 (quin, 0.6H, J = 7.0 Hz), 

4.32–4.47 (m, 1.8H), 4.07 (t, 0.6H, J = 7.2 Hz), 3.92–4.01 (m, 1.0H), 2.96 (s, 1.2H), 2.93 (s, 1.8H), 1.44–1.46 (m, 

10.8H), 1.36 (d, 1.2H, J = 7.0 Hz), 0.76 (s, 3.6H), 0.71 (s, 5.4H), 0.04 (s, 1.2H), 0.02 (s, 1.8H), −0.22 (s, 1.2H), 

−0.23 (s, 1.8H); 13C{1H} NMR (100 MHz, CDCl3, 3:2 rotamer mixture) δ 172.4, 172.1, 168.5, 167.8, 167.7, 

156.3, 155.7 ,144.5, 144.2, 144.1, 143.8, 141.22, 141.17, 141.11, 141.07, 140.7, 139.7, 139.4, 132.8, 132.5, 

128.22, 128.16, 128.1, 127.6, 127.5, 127.4, 127.3, 127.1, 127.0, 126.9, 126.84, 126.78, 126.7, 125.6, 125.3, 

125.1, 125.0, 123.0, 122.9, 121.6, 121.5, 120.4, 119.9, 119.84, 119.80, 119.7, 82.5, 82.4, 73.4 ,72.9, 68.3, 67.7, 

66.1, 48.9, 47.1, 47.0, 31.5, 27.93, 27.89, 25.54, 25.49, 18.7, 18.6, 17.91, 17.87, −4.7, −4.8, −5.26, −5.30; IR 

(neat) 3339, 3066, 2951, 2929, 2888, 2856, 1691, 1650, 1523, 1444, 1146 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ 

Calcd for C45H56N3O7Si 778.3882; Found 778.3863. 

Fmoc-(2S,3S)-MePhe(3-OH)–Ant–Ala-OtBu (13). To a solution of the TBS ether 11b (100 mg, 129 µmol) in 



dry THF (2.6 mL) was added HF·pyridine (234 µL, 12.9 mmol. 100 equiv) at 0 °C under an argon atmosphere, 

and the mixture was stirred for 30 min at the same temperature. After being stirred at room temperature for 9 h, 

the reaction mixture was poured into saturated aqueous NaHCO3 at 0 °C. The aqueous layer was extracted three 

times with EtOAc. The combined organic layers were washed with 10% aqueous citric acid and brine, dried over 

Na2SO4, and filtered. The filtrate was concentrated in vacuo, and the resulting residue was purified by column 

chromatography on silica gel (eluted with toluene/EtOAc = 9:1) to afford the alcohol 13 (65.0 mg, 97.9 µmol, 

76%) as a white amorphous solid. mp 68–69 °C; [α]24
D –64 (c 0.81, CHCl3); 1H NMR (400 MHz, CDCl3, 2:1 

rotamer mixture) δ 12.1 (s, 0.7H), 11.9 (s, 0.3H), 8.67 (d, 0.7H, J = 8.4 Hz), 8.48 (d, 0.3H, J = 8.4 Hz), 7.72–

7.76 (m, 2.0H), 7.10–7.57 (m, 14.0H), 6.87 (d, 0.7H, J = 6.8 Hz), 6.85 (d, 0.3H, J = 6.9 Hz), 5.39 (dd, 0.7H, J = 

8.8, 2.0 Hz), 4.98 (d, 0.7H, J = 2.0 Hz), 4.64-4.76 (m, 1.6H), 4.53 (quin, 0.3H, J = 6.9 Hz), 4.16-4.33 (m, 3.7H), 

2.80 (s, 2.0H), 2.61 (s, 1.0H), 1.47 (s, 3.0H), 1.39 (s, 6.0H), 1.32 (d, 1.0H, J = 6.9 Hz), 1.29 (d, 2.0H, J = 7.2 

Hz); 13C{1H} NMR (100 MHz, CDCl3, 2:1 rotamer mixture) δ 172.2, 172.0, 170.9, 170.3, 167.7, 167..6, 156.3, 

155.1, 144.0, 143.9, 143.83, 143.80, 141.5, 141.3, 141.2, 141.1, 139.7, 139.6, 139.1, 138.9, 132.9, 132.8, 128.41, 

12.36, 128.32, 128.2, 127.7, 127.62, 127.57, 127.3, 127.04, 127.01, 126.97, 126.93, 126.8, 126.7, 125.4, 125.2, 

124.7, 124.4, 123.4, 121.54, 121.47, 120.1, 120.0, 119.91, 119.87, 119.83, 82.6, 82.5, 73.0, 72.4, 68.1, 67.7, 66.6, 

48.9, 48.8, 47.2, 27.93, 27.86, 18.6, 18.5; IR (neat) 3444, 3323, 2956, 2929, 2893, 2851, 1707, 1665, 1519, 1455, 

1167, 847 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C39H42N3O7 664.3017; Found 664.3001. 

Boc-D-allo-Ile–(2S,3S)-MePhe(3-OH)–Ant–Ala-OtBu (14) and the ester 15. By following the procedure 

described above for 12, deFmoc of the N-Fmoc amine 13 (52.0 mg, 78.3 µmol, 1.0 equiv) was performed. The 

resulting crude amine was used for next reaction without further purification. 

To a solution of the crude amine in dry DMF (0.2 mL) was added Boc-D-allo-Ile-OH (54.0 mg, 235 µmol), 

DIEA (82.0 µL, 470 µmol) and COMU (111 mg, 259 µmol) at 0 °C under an argon atmosphere. The mixture 



was stirred at room temperature for 26 h. After workup procedure described above for 12, the resulting residue 

was purified by column chromatography on silica gel (eluted with hexane/EtOAc = 2:1) to give a mixture of the 

amide 14 and the ester 15. Further purification by preparative TLC (eluted with hexane/EtOAc = 2;1) afforded 

the amide 14 (23.1 mg, 45% in 2 steps) as a white amorphous solid and the ester 15 (3.6 mg, 7% in 2 steps) as a 

pale yellow oil, respectively. Amide 14: mp 59–60 °C; [α]24
D −15 (c 0.56, CHCl3); 1H NMR (600 MHz, CDCl3) 

δ 11.7 (s, 1H), 8.62 (d, 1H, J = 8.0 Hz), 7.55 (d, 1H, J = 8.0 Hz, c), 7.50 (t, 1H, J = 8.0 Hz), 7.39–7.40 (m, 2H), 

7.29–7.35 (m, 4H), 7.13 (t, 1H, J = 8.0 Hz), 6.93 (d, 1H, J = 6.8 Hz), 5.37 (d, 1H, J = 9.1 Hz), 5.33 (d, 1H, J = 

9.1 Hz), 4.90 (brs, 1H), 4.69 (brs, 1H), 4.57 (quin, 1H, J = 6.8 Hz), 4.45 (dd, 1H, J = 9.2, 2.1 Hz), 2.83 (s, 3H, k), 

1.64 (brs, 1H), 1.49 (s, 9H, l), 1.45 (d, 3H, J = 6.8 Hz), 1.42 (s, 9H), 1.18–1.26 (m, 1H, n), 0.95–1.01 (m, 1H), 

0.80 (t, 3H, J = 7.2 Hz), 0.41 (d, 3H, J = 6.5 Hz); 13C{1H} NMR (150 MHz, CDCl3) δ 173.1, 172.2, 170.2, 167.5, 

155.8, 139.3, 139.0, 132.9, 128.54, 128.49, 127.2, 126.7, 123.4, 121.4, 120.0, 82.7, 79.1, 72.4, 53.2, 49.0, 45.8, 

37.0, 28.3, 28.0, 26.9, 18.7, 13.4, 11.9, 8.6; IR (neat) 3423, 3355, 2972, 2929, 1715, 1647, 1600, 1589, 1521, 

1448, 1160, 756 cm−1; HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C35H51N4O8 655.3701; Found 655.3685. Ester 

15: [α]22
D +8.7 (c 0.13, CHCl3); 1H NMR (600 MHz, CDCl3) δ 11.4 (s, 1H), 8.54 (d, 1H, J = 7.7 Hz), 7.49 (d, 1H, 

J = 7.9 Hz), 7.46 (t, 1H, J = 7.9 Hz), 6.79 (d, 1H, J = 6.6 Hz), 6.19 (d, 1H, J = 5.4 Hz), 4.58 (quin, 1H, J = 6.4 

Hz), 4.45 (dd, 1H, J = 9.3, 2.3 Hz), 3.63 (brd, 1H, J = 5.4 Hz), 2.46 (s, 3H), 1.92–1.97 (m, 1H), 1.52 (s, 9H), 

1.45 (d, 3H, J = 6.6 Hz), 1.40 (s, 9H), 1.34–1.42 (m, 1H), 1.12–1.21 (m, 1H), 0.89 (t, 3H, J = 7.2 Hz), 0.73 (d, 

3H, J = 6.6 Hz); 13C{1H} NMR (150 MHz, CDCl3) δ 172.2, 171.3, 169.6, 167.6, 155.9, 138.4, 136.0, 132.5, 

128.44, 128.36, 127.0, 126.8, 123.2, 121.7, 121.4, 82.6, 79.6, 69.9, 56.9, 49.0, 37.5, 35.4, 29.7, 28.3, 28.0, 26.2, 

18.7, 14.3, 11.7; IR (neat) 2961, 2928, 2882, 2861, 1701, 1513, 1471, 1246, 1156, 1088, 837 cm−1; HRMS 

(ESI-TOF) m/z: [M+H]+ Calcd for C35H51N4O8 655.3701; Found 655.3682. 

The revised structure of Asperterrestide A (1b). By following the procedure described above for 1a, the 



deprotection and macrolactamization of the linear tetrapeptide 14 (10.0 mg, 15.3 µmol) afforded the revised 

structure of asperterrestide A (1b) (3.0 mg, 41% in 2 steps) as a white solid. mp 141–142 °C; [α]26
D −33 (c 0.085, 

MeOH) [lit.10 [α]30
D −13 (c 0.03, MeOH)]; 1H NMR (600 MHz, CDCl3) δ 9.15 (s, 1H), 8.20 (brd, 1H, J = 7.9 Hz), 

7.49 (td, 1H, J = 7.9, 1.4 Hz), 7.41–7.42 (m, 2H), 7.29–7.37 (m, 4H), 7.16 (td, 1H, J = 7.9, 1.0 Hz), 7.02 (d, 1H, 

J = 10.0 Hz), 6.12 (d, 1H, J = 7.9 Hz), 5.77 (d, 1H, J = 9.5 Hz), 5.18 (dd, 1H, J = 9.5, 3.2 Hz), 4.47–4.52 (m, 

1H), 4.34 (t, 1H, J = 10.0 Hz), 2.82 (s, 3H), 1.73–1.80 (m, 1H), 1.44 (d, 3H, J = 6.9 Hz), 0.81 (d, 3H, J = 6.5 Hz), 

0.55 (t, 3H, J = 7.4 Hz), 0.26–0.37 (m, 2H); 13C{1H} NMR (150 MHz, CDCl3) δ 172.4, 170.9, 170.2, 169.2, 

138.5, 135.1, 131.6, 128.6, 128.5, 127.4, 126.5, 125.5, 124.4, 123.4, 71.5, 60.8, 53.8, 50.0, 36.2, 31.3, 24.7, 14.8, 

14.4, 10.8; IR (neat) 3286, 2961, 2925, 2871, 2856, 1676, 1644, 1602, 1584, 1450, 1045, 758 cm−1; HRMS 

(ESI-TOF) m/z: [M+H]+ Calcd for C26H33N4O5 481.2445; Found 481.2433. 

General Procedure of Molecular Modeling. Conformational searches of 1d-f were performed by a 

MacroModel program on Maestro Version 10.1.018.44−46 Initial coordinates of a macrocycle were generated by 

Mixed torsional/Low-mode sampling (Torsional sampling options: extended; Use 200 steps per rotatable bond; 

Energy window for saving structures: 42 kJ·mol–1) with 10,000 steps and were energy minimized using an 

OPLS-2005 force field without solvent to provide possible conformers. 3D structures, calculated potential 

energies, relative energies, and the atomic coordinates of the lowest-energy conformers are summarized in 

Figures S1-S3 and Tables S3-S8 in the Supporting Information. 

Evaluation of cytotoxicity of the synthetic 1a and 1b against cancer cell lines. A panel of three cancer cell 

lines were obtained and cultured as summarized in Table S13 (Supporting Information). The cytotoxicity of 

synthetic asperterrestides 1a and 1b against the cancer cell lines was assayed by measuring the amount of ATP 

in the cells using CellTiter-Glo (Promega, Madison, WI) as reported previously.52, 53 In brief, the cells were 

incubated in 384-well plates at a density of 500 cells/ well with a medium volume of 40 µL for 24 h at 37 °C 



under 5% CO2. The cells were then treated with 0.1 µL of compound solutions at final concentration ranges of 

20 µM to 1 nM (10-point dose) using an Echo 555 Liquid Handler (Labcyte, San Jose, CA). The vehicle solvent 

(DMSO) was used as a control at a maximum concentration of 0.1%. After a 72 h incubation at 37 °C under 5% 

CO2, 10 µL of CellTiter-Glo reagent solution was added to the medium, and the plate was mixed with a plate 

mixer and incubated for 10 min at 30 °C. The luminescence was measured using an EnSpire 2300 (PerkinElmer). 

Absorbance for the control well (C) and test well (T) was measured along with that for the test well at time 0 

(T0). Cell growth inhibition (% growth) by each concentration of the drug was calculated as 100[(T − T0)/(C − 

T0)], and the IC50 values were analyzed using Morphit software (The Edge Software Consultancy, Guildford, 

U.K.). 
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