11 research outputs found

    D-loop Mutations in Renal Cell Carcinoma Improve Predictive Accuracy for Cancer-Related Death by Integrating with Mutations in the NADH Dehydrogenase Subunit 1 Gene

    No full text
    Renal cell carcinoma (RCC) is associated with various genetic alterations. Although whole-genome/exome sequencing analysis has revealed that nuclear genome alterations are associated with clinical outcomes, the association between nucleotide alterations in the mitochondrial genome and RCC clinical outcomes remains unclear. In this study, we analyzed somatic mutations in the mitochondrial D-loop region, using RCC samples from 61 consecutive patients with localized RCC. Moreover, we analyzed the relationship between D-loop mutations and NADH dehydrogenase subunit 1 (MT-ND1) mutations, which we previously found to be associated with clinical outcomes in localized RCC. Among the 61 localized RCCs, 34 patients (55.7%) had at least one mitochondrial D-loop mutation. The number of D-loop mutations was associated with larger tumor diameter (>32 mm) and higher nuclear grade (≥ISUP grade 3). Moreover, patients with D-loop mutations showed no differences in cancer-specific survival when compared with patients without D-loop mutations. However, the co-occurrence of D-loop and MT-ND1 mutations improved the predictive accuracy of cancer-related deaths among our cohort, increasing the concordance index (C-index) from 0.757 to 0.810. Thus, we found that D-loop mutations are associated with adverse pathological features in localized RCC and may improve predictive accuracy for cancer-specific deaths when combined with MT-ND1 mutations

    Evaluation of Amino Acid-Mustard Transport as L-Type Amino Acid Transporter 1 (LAT1)-Mediated Alkylating Agents

    Get PDF
    The L-type amino acid transporter 1 (LAT1, SLC7A5) is an Na+-independent neutral amino acid transporter the expression of which is located in retinal endothelial cells. Due to its broad substrate selectivity, LAT1 has been proposed to mediate the transport of amino acid-related drugs across the blood-tissue barriers. Here, we have investigated the transport screening of amino acid-mustards using a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB2) which expresses LAT1. We synthesized 5 amino acid-mustards: tyrosine-mustard, phenylglycine-mustard, alanine-mustard, ornithine-mustard, and lysine-mustard. LAT1-mediated [3H]L-phenylalanine (Phe) uptake by TR-iBRB2 cells was inhibited in a competitive manner by tyrosine-mustard and phenylglycine-mustard as well as melphalan (phenylalanine-mustard). Phenylglycine-mustard was able to induce the efflux of [3H]Phe preloaded into the TR-iBRB2 cells expressing LAT1 through the obligatory exchange mechanism, although tyrosine-mustard, alanine-mustard, ornithine-mustard, lysine-mustard, and melphalan did not induce any significant efflux. These findings suggest that phenylglycine-mustard is a better substrate for LAT1 than melphalan and other amino acid-mustards
    corecore