69 research outputs found

    Phenotypes of pain behavior in phospholipase C-related but catalytically inactive protein type 1 knockout mice

    Get PDF
    Phospholipase C-related inactive protein (PRIP) plays important roles in trafficking to the plasma membrane of GABAA receptor, which is involved in the dominant inhibitory neurotransmission in the spinal cord and plays an important role in nociceptive transmission. However, the role of PRIP in pain sensation remains unknown. In this study, we investigated the phenotypes of pain behaviors in PRIP type 1 knockout (PRIP-1 -/- ) mice. The mutant mice showed hyperalgesic responses in the second phase of the formalin test and the von Frey test as compared with those in wild-type mice. In situ hybridization studies of GABAA receptors revealed significantly decreased expression of γ2 subunit mRNA in the dorsal and ventral horns of the spinal cord in PRIP-1 -/- mice, but no difference in α1 subunit mRNA expression. β2 subunit mRNA expression was significantly higher in PRIP-1 -/- mice than in wild-type mice in all areas of the spinal cord. On the other hand, the slow decay time constant for the spontaneous inhibitory current was significantly increased by treatment with diazepam in wild-type mice, but not in PRIP-1 -/- mice. These results suggest that PRIP-1 -/- mice exhibit the changes of the function and subunits expression of GABAA receptor in the spinal cord, which may be responsible for abnormal pain sensation in these mice

    Axon terminal hypertrophy of striatal projection neurons with levodopa-induced dyskinesia priming

    Get PDF
    BackgroundA rat model of levodopa-induced dyskinesia (LID) showed enlarged axon terminals of striatal direct pathway neurons in the internal segment of the globus pallidus (GPi) with excessive gamma-aminobutyric acid (GABA) storage in them. Massive GABA release to GPi upon levodopa administration determines the emergence of LID.ObjectivesWe examined whether LID and axon terminal hypertrophy gradually develop with repeated levodopa treatment in Parkinsonian rats to examine if the hypertrophy reflects dyskinesia priming.Methods6-hydroxydopamine-lesioned hemiparkinsonian rats were randomly allocated to receive saline injections (placebo group, 14 days; n = 4), injections of 6 mg/kg levodopa methyl ester combined with 12.5 mg/kg benserazide (levodopa-treated groups, 3-day-treatment; n = 4, 7-day-treatment; n = 4, 14-day-treatment; n = 4), or injections of 6 mg/kg levodopa methyl ester with 12.5 mg/kg benserazide and 1 mg/kg 8-hydroxy-2-(di-n-propylamino)tetralin for 14 days (8-OH-DPAT-treated group; n = 4). We evaluated abnormal involuntary movement (AIM) scores and axon terminals in the GPi.ResultsThe AIM score increased with levodopa treatment, as did the hypertrophy of axon terminals in the GPi, showing an increased number of synaptic vesicles in hypertrophied terminals.ConclusionIncreased GABA storage in axon terminals of the direct pathway neurons represents the priming process of LID

    Ultra-High-Resolution Computed Tomography of the Lung: Image Quality of a Prototype Scanner

    Get PDF
    Purpose: The image noise and image quality of a prototype ultra-high-resolution computed tomography (U-HRCT) scanner was evaluated and compared with those of conventional high-resolution CT (C-HRCT) scanners. Materials and Methods: This study was approved by the institutional review board. A U-HRCT scanner prototype with 0.25 mm × 4 rows and operating at 120 mAs was used. The C-HRCT images were obtained using a 0.5 mm × 16 or 0.5 mm × 64 detector-row CT scanner operating at 150 mAs. Images from both scanners were reconstructed at 0.1-mm intervals; the slice thickness was 0.25 mm for the U-HRCT scanner and 0.5 mm for the C-HRCT scanners. For both scanners, the display field of view was 80 mm. The image noise of each scanner was evaluated using a phantom. U-HRCT and C-HRCT images of 53 images selected from 37 lung nodules were then observed and graded using a 5-point score by 10 board-certified thoracic radiologists. The images were presented to the observers randomly and in a blinded manner. Results: The image noise for U-HRCT (100.87 ± 0.51 Hounsfield units [HU]) was greater than that for C-HRCT (40.41 ± 0.52 HU; P <.0001). The image quality of U-HRCT was graded as superior to that of C-HRCT (P <.0001) for all of the following parameters that were examined: margins of subsolid and solid nodules, edges of solid components and pulmonary ves sels in subsolid nodules, air bronchograms, pleural indentations, margins of pulmonary vessels, edges of bronchi, and interlobar fissures. Conclusion: Despite a larger image noise, the prototype U-HRCT scanner had a significantly better image quality than the C-HRCT scanners

    What mechanisms are responsible for the reuptake of levodopa-derived dopamine in parkinsonian striatum?

    No full text
    Levodopa is the most effective medication for motor symptoms in Parkinson’s disease. However, various motor and non-motor complications are associated with levodopa treatment, resulting from altered levodopa-dopamine metabolism with disease progression and long-term use of the drug. The present review emphasizes the role of monoamine transporters other than the dopamine transporter in uptake of extracellular dopamine in the dopamine-denervated striatum. When dopaminergic neurons are lost and dopamine transporters decreased, serotonin and norepinephrine transporters compensate by increasing uptake of excessive extracellular dopamine in the striatum. Organic cation transporter-3 and plasma membrane monoamine transporter, low affinity and high capacity transporters, also potentially uptake dopamine when high-affinity transporters do not work normally. Selective serotonin reuptake inhibitors and serotonin and norepinephrine reuptake inhibitors are often administered to patients with Parkinson’s disease presenting with depression, pain or other non-motor symptoms. Thus, it is important to address the potential of these drugs to modify dopamine metabolism and uptake through blockade of the compensatory function of these transporters, which could lead to changes in motor symptoms of Parkinson’s disease

    Effects of dissolved and ambient gases on sonochemical degradation of methylene blue in high-amplitude resonant mode

    Full text link
    In this paper, we show the dominant contribution of an ambient gas to sonochemical reactions in a high-amplitude acoustic resonant mode. A high-amplitude resonant mode in the solution was predicted by the three-layer resonator model, which showed an acoustic amplitude higher than the standard amplitude by a factor of 5. The high-amplitude resonance mode was used to decompose methylene blue in water. The effects of the dissolved gases and the ambient gases of argon, oxygen, and helium on the degradation efficiency were systematically studied using a closed resonant reactor. The maximum efficiency was achieved when the ambient gas was argon regardless of the dissolved gases. The replacement of dissolved gas with ambient gas is enhanced with high-amplitude ultrasonic irradiation.Hirotsugu Ogi, Yusuke Tomiyama, Yusuke Shoji, Tomoo Mizugaki and Masahiko Hirao. Effects of dissolved and ambient gases on sonochemical degradation of methylene blue in high-amplitude resonant mode. Japanese Journal of Applied Physics, 2006, 45(5S), 4678. https://doi.org/10.1143/JJAP.45.4678

    Zonisamide Enhances Motor Effects of Levodopa, Not of Apomorphine, in a Rat Model of Parkinson’s Disease

    No full text
    Zonisamide is a relatively recent drug for Parkinson’s disease. Multiple hypotheses have been proposed to explain the antiparkinsonian effects of zonisamide. However, it is still unclear whether the effect of zonisamide is mainly due to dopaminergic modification in the striatum, or if zonisamide works through nondopaminergic pathways. We conducted the present study to determine the mechanism that is mainly responsible for zonisamide’s effects in Parkinson’s disease. We examined the effects of zonisamide on motor symptoms in a hemiparkinsonian rat model when administered singly, coadministered with levodopa, a dopamine precursor, or apomorphine, a D1 and D2 dopamine receptor agonist. We used 6-hydroxydopamine-lesioned hemiparkinsonian rats, which were allocated to one of five groups: 14 rats received levodopa only (6 mg/kg), 12 rats received levodopa (6 mg/kg) plus zonisamide (50 mg/kg), six rats received apomorphine only (0.05 mg/kg), six rats received apomorphine (0.05 mg/kg) plus zonisamide (50 mg/kg), and six rats received zonisamide only (50 mg/kg). The drugs were administered once daily for 15 days. We evaluated abnormal involuntary movement every 20 min during a 3 h period following the injection of drugs on treatment Days 1, 8, and 15. Western blot analyses for dopamine decarboxylase and vesicular monoamine transferase-2 were performed using striatal tissues in the lesioned side of rats in the levodopa only group (n = 6) and levodopa plus zonisamide group (n = 4). Levodopa-induced abnormal involuntary movement was significantly enhanced by coadministration of zonisamide. In contrast, zonisamide had no effect on apomorphine-induced abnormal involuntary movement. Zonisamide monotherapy did not induce abnormal involuntary movement. Zonisamide did not affect striatal expression of dopamine decarboxylase or vesicular monoamine transferase-2. In conclusion, zonisamide appears to generate its antiparkinsonian effects by modulating levodopa-dopamine metabolism in the parkinsonian striatum
    corecore