33 research outputs found

    Minimization of Arakelov K-energy for many cases

    Full text link
    We prove that for various polarized varieties over Q\overline{\mathbb{Q}}, which broadly includes K-trivial case, K-ample case, Fano case, minimal models, certain classes of fibrations, certain metrized ``minimal-like" models minimizes the Arakelov theoretic analogue of the Mabuchi K-energy, as conjectured in [Od15]. This is an Arakelov theoretic analogue of [H22b].Comment: 8 page

    K+ is an indispensable cofactor for GrpE stimulation of ATPase activity of DnaK·DnaJ complex from Thermus thermophilus

    Get PDF
    AbstractK+ is an indispensable cofactor for ATPase activity of eukaryotic cytosolic Hsp70 chaperone systems which lack a GrpE homolog. In the case of the bacterial Hsp70 (DnaK) system, GrpE, a nucleotide exchange factor, stimulates ATPase activity but little is known about the effect of K+. Here, we have cloned a grpE gene from a thermophile, Thermus thermophilus, and purified a homodimeric GrpE protein. Using proteins of this bacterium, we found that the GrpE stimulation of ATPase activity of DnaK·DnaJ complex was absolutely dependent on the presence of K+

    Functional expression of thiocyanate hydrolase is promoted by its activator protein, P15K

    Get PDF
    AbstractThiocyanate hydrolase (SCNase) is a cobalt-containing enzyme with a post-translationally modified cysteine ligand, γCys131-SO2H. When the SCNase α, β and γ subunits were expressed in Escherichia coli, the subunits assembled to form a hetero-dodecamer, (αβγ)4, like native SCNase but exhibited no catalytic activity. Metal analysis indicated that SCNase was expressed as an apo-form irrespective of the presence of cobalt in the medium. On the contrary, SCNase co-expressed with P15K, encoded just downstream of SCNase genes, in cobalt-enriched medium under the optimized condition (SCNase(+P15K)) possessed 0.86 Co atom/αβγ trimer and exhibited 78% of the activity of native SCNase. SCNase(+P15K) showed a UV–Vis absorption peak characteristic of the SCNase cobalt center. About 70% of SCNase(+P15K) had the γCys131-SO2H modification. These results indicate that SCNase(+P15K) is the active holo-SCNase. P15K is likely to promote the functional expression of SCNase probably by assisting the incorporation of cobalt ion

    HSP60 possesses a GTPase activity and mediates protein folding with HSP10

    Get PDF
    The mammalian molecular chaperone, HSP60, plays an essential role in protein homeostasis through mediating protein folding and assembly. The structure and ATP-dependent function of HSP60 has been well established in recent studies. After ATP, GTP is the major cellular nucleotide. In this paper, we have investigated the role of GTP in the activity of HSP60. It was found that HSP60 has different properties with respect to allostery, complex formation and protein folding activity depending on the nucleoside triphosphate present. The presence of GTP slightly affected the ATPase activity of HSP60 during protein folding. These results provide clues as to the functional mechanism of the HSP60-HSP10 complex

    Comparative proteomic analysis of glomerular proteins in primary and bucillamine-induced membranous nephropathy

    Get PDF
    BackgroundAnti-phospholipase A2 receptor autoantibody (PLA2R Ab)-associated membranous nephropathy (MN) is the most common form of primary MN (pMN). On the other hand, bucillamine (BCL), an antirheumatic drug developed in Japan, was reported to cause a rare form of secondary MN (sMN). Between these MN forms, comparative proteomic analysis of glomerular proteins has not been performed.MethodsWe used renal biopsy specimens from 6 patients with PLA2R Ab (+) pMN, 6 patients with PLA2R Ab (‒) pMN, 6 patients with BCL-induced sMN, and 5 control cases (time 0 transplant biopsies). Proteins were extracted from laser-microdissected glomeruli and analyzed using mass spectrometry. The quantification values of protein abundance in each MN group were compared with those in the control group.ResultsMore than 800 proteins with high confidence were identified. Principal component analysis revealed a different distribution between the pMN and sMN groups. For further analysis, 441 proteins matched with ≥ 3 peptides were selected. Among the pMN and sMN groups, we compared the profiles of several protein groups based on the structural and functional characteristics, such as immunoglobulins, complements, complement-regulating proteins, podocyte-associated proteins, glomerular basement membrane proteins, and several proteins that are known to be associated with kidney diseases, including MN. In all MN groups, increased levels of immunoglobulins (IgG, IgA, and IgM), complements (C3, C4, and C9), complement factor H-related protein 5, type XVIII collagen, calmodulin, polyubiquitin, and ubiquitin ligase were observed. For some proteins, such as type VII collagen and nestin, the fold-change values were significantly different between the pMN and sMN groups.ConclusionsBetween the pMN and BCL-induced sMN groups, we observed common and different alterations in protein levels such as known disease-associated proteins and potential disease marker proteins

    Properties and crystal structure of methylenetetrahydrofolate reductase from Thermus thermophilus HB8.

    Get PDF
    Methylenetetrahydrofolate reductase (MTHFR) is one of the enzymes involved in homocysteine metabolism. Despite considerable genetic and clinical attention, the reaction mechanism and regulation of this enzyme are not fully understood because of difficult production and poor stability. While recombinant enzymes from thermophilic organisms are often stable and easy to prepare, properties of thermostable MTHFRs have not yet been reported.MTHFR from Thermus thermophilus HB8, a homologue of Escherichia coli MetF, has been expressed in E. coli and purified. The purified MTHFR was chiefly obtained as a heterodimer of apo- and holo-subunits, that is, one flavin adenine dinucleotide (FAD) prosthetic group bound per dimer. The crystal structure of the holo-subunit was quite similar to the β(8)α(8) barrel of E. coli MTHFR, while that of the apo-subunit was a previously unobserved closed form. In addition, the intersubunit interface of the dimer in the crystals was different from any of the subunit interfaces of the tetramer of E. coli MTHFR. Free FAD could be incorporated into the apo-subunit of the purified Thermus enzyme after purification, forming a homodimer of holo-subunits. Comparison of the crystal structures of the heterodimer and the homodimer revealed different intersubunit interfaces, indicating a large conformational change upon FAD binding. Most of the biochemical properties of the heterodimer and the homodimer were the same, except that the homodimer showed ≈50% activity per FAD-bound subunit in folate-dependent reactions.The different intersubunit interfaces and rearrangement of subunits of Thermus MTHFR may be related to human enzyme properties, such as the allosteric regulation by S-adenosylmethionine and the enhanced instability of the Ala222Val mutant upon loss of FAD. Whereas E. coli MTHFR was the only structural model for human MTHFR to date, our findings suggest that Thermus MTHFR will be another useful model for this important enzyme

    Catalytic Mechanism of Nitrile Hydratase Subsequent to Cyclic Intermediate Formation: A QM/MM Study

    No full text
    The catalytic mechanism of an Fe-containing nitrile hydratase (NHase) subsequent to the formation of a cyclic intermediate was investigated using a hybrid quantum mechanics/molecular mechanics (QM/MM) method. We identified the following mechanism: (i) proton transfer from βTyr72 to the substrate via αSer113, and cleavage of the S–O bond of αCys114–SO<sup>–</sup> and formation of a disulfide bond between αCys109 and αCys114; (ii) direct attack of a water molecule on the sulfur atom of αCys114, which resulted in the generation of both an imidic acid and a renewed sulfenic cysteine; and (iii) isomerization of the imidic acid to the amide. In addition, to clarify the role of βArg56K, which is one of the essential amino residues in the enzyme, we analyzed a βR56K mutant in which βArg56 was replaced by Lys. The results suggest that βArg56 is necessary for the formation of disulfide intermediate by stabilizing the cleavage of the S–O bond via a hydrogen bond with the oxygen atom of αCys114–SO<sup>–</sup>
    corecore