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Abstract Thiocyanate hydrolase (SCNase) is a cobalt-contain-
ing enzyme with a post-translationally modified cysteine ligand,
cCys131-SO2H. When the SCNase a, b and c subunits were ex-
pressed in Escherichia coli, the subunits assembled to form a het-
ero-dodecamer, (abc)4, like native SCNase but exhibited no
catalytic activity. Metal analysis indicated that SCNase was ex-
pressed as an apo-form irrespective of the presence of cobalt
in the medium. On the contrary, SCNase co-expressed with
P15K, encoded just downstream of SCNase genes, in cobalt-en-
riched medium under the optimized condition (SCNase(+P15K))
possessed 0.86 Co atom/abc trimer and exhibited 78% of the
activity of native SCNase. SCNase(+P15K) showed a UV–Vis
absorption peak characteristic of the SCNase cobalt center.
About 70% of SCNase(+P15K) had the cCys131-SO2H modifica-
tion. These results indicate that SCNase(+P15K) is the active
holo-SCNase. P15K is likely to promote the functional expres-
sion of SCNase probably by assisting the incorporation of cobalt
ion.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Thiocyanate is commonly produced from cellular thiogluco-

sides in plant tissues [1] and exists as a major constituent of

waste water from coke oven factories. The degradation of thio-

cyanate is an important subject in green chemistry. Thiocya-

nate-degradating organisms are believed to be distributed

widely. Thiocyanate hydrolase (SCNase) [2], catalyzing the

hydrolysis of thiocyanate to carbonyl sulfide and ammonia

(SCN� + 2H2O fi COS + NH3 + OH�), was first purified

from Thiobacillus thioparus THI 115. SCNase is composed of

a, b and c subunits. The SCNase c subunit is highly homolo-

gous with the a subunit of nitrile hydratase (NHase), while the

SCNase b and a subunits comprise the N- and C-terminal

halves of the NHase b subunit, respectively [3]. NHase [4] con-

tains a non-corrin cobalt or non-heme iron center, which is

bound to a motif, V-C1-X-L-C2-S-C3 of a subunit. C2 and

C3 are post-translationally modified to cysteine-sulfinic acid

(Cys-SO2H) and -sulfenic acid (Cys-SOH), respectively [5,6].

The motif is completely conserved in the SCNase c subunit,

V127-C-T-L-C-S-C133 [3]. Very recently, we have shown that

SCNase possesses one Co ion per abc hetero-trimer with a

similar ligand field with Co-type NHases [7]. We have also dis-

covered that cCys131, corresponding to C2 in the motif, was

post-translationally modified to Cys-SO2H based on mass

spectrometric measurements [7]. Although the presence of

the Cys-SOH modification has not been confirmed, these re-

sults strongly suggest that SCNase belongs to the same protein

superfamily as NHases.

To characterize SCNase biochemically and structurally, we

tried to express SCNase in Escherichia coli. When only the

genes coding SCNase a, b and c subunits were introduced into

E. coli, no active SCNase was obtained even in the cobalt-

enriched medium. It is known that both Co- and Fe-type

NHases require the co-expression of their specific accessory

proteins [8–13]. We named them NHase activators [10].

Fe-type NHase activator has a putative metal-binding motif,

CXCC, and the replacement of one of the three cysteines with

serine impaired functional expression of NHase in E. coli [14].

In contrast, Co-type NHase activators are small proteins

with a molecular mass of 14–17 kDa and exhibit no sequence
blished by Elsevier B.V. All rights reserved.
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similarity to Fe-type ones [11–13,15,16]. It has no obvious ami-

no acid sequence homology with known proteins except

NHase b subunit and lacks known metal-binding motifs. Re-

cently, Cameron et al. [13] proposed that P14K, the Co-type

NHase activator of Bacillus pallidus RAPc8 functions as a sub-

unit-specific chaperone. They speculated that P14K stabilized

the structure of NHase a subunit to allow the incorporation of

Co ion prior to a-b subunit association. Here, we identified the

SCNase activator, P15K, sharing only limited homology with

Co-type NHase activators. Only when the SCNase a, b and c
subunits were expressed together with P15K in E. coli in

cobalt-enriched culture medium, the obtained recombinant

SCNase exhibited SCNase activity. The results strongly

suggested that P15K promoted functional expression of SCN-

ase by assisting the incorporation of a cobalt ion into SCNase

proteins.
2. Materials and methods

2.1. Construction of expression plasmids
To construct the plasmid for the expression of SCNase in E. coli, the

encoding sequence was amplified by PCR using a cosmid clone, SCN-2,
containing scnB, scnA and scnC genes encoding the b, a and c sub-
units of SCNase of T. thioparus THI 115 [3] as the template. The prim-
ers used were 5 0-TTTCATATGTCATCGTCCATCAGAGAAG-30

and 5 0-TTTGAGCTCTCAATGATCGTGATGCAC-3 0. The PCR
products were excised with NdeI and SacI and subcloned into pET32a
(Novagen) to create the plasmid pGE32. To construct the plasmid for
the expression of P15K in E. coli, the encoding sequence was amplified
by PCR using pUC118/T2 as the template. The primers used were 5 0-
AAGCATATGCCTGAGAACAACGTGGAAG-3 0 and 5 0-CCGAA-
GCTTTCAGACGCTCTTCAGTTTC-3 0. The PCR products were
excised with NdeI and HindIII and subcloned into pET30a (Novagen)
to create the plasmid, pSAE30. As for the arabinose-induced expres-
sion, the expression vectors for SCNase subunits and P15K were con-
structed as follows: The scnB, scnA and scnC genes were amplified by
PCR using pGE32 as the template with the primers, 5 0-TTCATATGT-
CATCGTCCATCAGAGAAGAGGTGC-3 0 and 5 0-TTTGGATCCT-
CAATGATCGTGATGCACCGGCCT-3 0. The PCR products were
excised with NdeI and BamHI and subcloned into pET30a (Novagen)
to create the plasmid, pSCNabgE30. The P15K gene was amplified by
PCR using pSAE30 as the template with the same primers as pSAE30.
The PCR products were excised with NdeI and HindIII and subcloned
into pET23b (Novagen) to create the plasmid, pSAE23b.

2.2. Preparation of native and recombinant SCNases
Native SCNase was purified from T. thioparus THI 115 cells as de-

scribed previously [2]. E. coli BL21(DE3) cells harboring pGE32 were
grown in Luria–Bertani (LB) medium containing ampicillin (100 lg/
mL) at 30 �C. In the case of E. coli BL21(DE3) cells harboring both
pGE32 and pSAE30, ampicillin (100 lg/mL) and kanamycin (80 lg/
mL) were added to the LB medium. Isopropyl-b-DD-thiogalactopyrano-
side (IPTG) (1.0 mM) was added when the optical density at 600 nm
(OD600) reached 0.5. In the case of cobalt-enriched medium, cobalt(II)
chloride was added at a final concentration of 0.40 mM together with
IPTG. The cells were further cultivated for 5 h and harvested by cen-
trifugation (5000 · g, 10 min, 4 �C). Recombinant SCNase was puri-
fied from the lysates of the cells by three steps chromatography
using a Butyl-Toyopearl 650M column (2.5 · 13 cm, Tosoh, Japan),
a hydroxyapatite column (1.5 · 8 cm, Bio-Rad, USA) and a SuperQ-
Toyopearl 650M column (2.5 · 14 cm, Tosoh). In the case of the
arabinose-induced expression, E. coli BL21-AI (Invitrogen, USA) cells
harboring both pSCNabgE30 and pSAE23b were grown in LB med-
ium containing ampicillin (100 lg/mL) and kanamycin (80 lg/mL) at
30 �C. 0.2% (w/v) arabinose was added when OD600 reached 0.2, and
IPTG (1.0 mM) and CoCl2 (0.1 mM) were added when OD600 reached
0.4. The cells were further cultivated for 5 h and harvested by centrifu-
gation (5000 · g, 10 min, 4 �C). Recombinant SCNase was purified
from the lysates of the cells by four steps chromatography using
Butyl-Toyopearl 650M (2.5 · 13 cm, Tosoh), Superdex 200pg Hiload
26/60 (2.6 · 60 cm, Amersham Biosciences, USA), SuperQ-Toyopearl
650M (2.5 · 14 cm, Tosoh) and Butyl-Toyopearl 650S (2.5 · 20 cm,
Tosoh). The purified SCNases were detected as a single band by
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–
PAGE).

2.3. Size exclusion chromatography-multiangle laser light scattering
The molecular weight of apo-SCNase was determined using size

exclusion chromatography-multiangle laser light scattering (SEC-
MALS) on Shodex PROTEIN KW-804 (0.80 · 30 cm, Showadenko,
Japan) and KW-803 (0.80 · 30 cm, Showadenko) columns connected
to a multiangle light-scattering detector (DAWN DSP, Wyatt Technol-
ogy, USA) and a Shodex RI-71 differential refractive index detector
(Showadenko). Potassium phosphate (50 mM, pH 7.3) containing
100 mM KCl was used as the mobile phase at a flow rate of 1.0 mL/
min. 1.6 · 102 lg of apo-SCNase was injected into the column. The
molecular weight and distribution of the recombinant protein were
determined with the Program ASTRA [17] as described [18].

2.4. Size exclusion chromatography
The molecular weight and stoichiometry of the native and apo-SCN-

ases and were examined by SEC on Superdex 200 10/300 GL
(1.0 · 30 cm, Amersham Biosciences) equilibrated with 50 mM potas-
sium phosphate, pH 7.8, containing 100 mM NaCl or with 50 mM
potassium phosphate, pH 7.3, containing 100 mM KCl. The flow rate
was 0.50 mL/min. The amounts of the native and apo-SCNases in-
jected were 15 and 100 lg, respectively. The molecular weight and
stoichiometry of SCNase(+P15K) was examined by SEC on the same
column equilibrated with 50 mM potassium phosphate, pH 7.8, con-
taining 100 mM NaCl. The flow rate was 0.50 mL/min. The amounts
of SCNase(+P15K) injected was 80 lg.

2.5. Electrospray ionization-liquid chromatography/mass spectrometry
Electrospray ionization-liquid chromatography/mass spectrometry

(ESI-LC/MS) was performed with a Finnigan LCQ ion trap mass spec-
trometer with an ESI probe, connected to a reversed-phase HPLC col-
umn, Mightysil C8 (Kanto-kagaku, Japan) using an Agilent model
1100 liquid chromatograph. The preparation of the peptide fragment
containing the metal-binding motif and mass spectrometry were per-
formed as described [19].

2.6. Enzyme assay
The SCNase activity was determined by the amount of ammonia

produced using 40 mM potassium thiocyanate as the substrate [2].
The amount of ammonia was quantified by using Nessler reagent
(Wako Pure Chemical Co., Japan). One unit of the activity is defined
as the quantity of SCNase that produces 1 lmol of ammonia per
minute. The specific activity of the purified native SCNase is about
32 U/mg-protein.

2.7. Other methods
Protein concentrations were determined based on Bradford’s meth-

od [20] using bovine serum albumin as a standard or by measuring the
absorbance at 280 nm (e280 of the purified native SCNase = 2.3
mL mg�1 cm�1). The amount of cobalt ions bound to the recombinant
SCNase was determined with an inductively coupled plasma mass
spectrophotometer (ICP-MS) (Agilent 7500a, Agilent Technology).
3. Results and discussion

3.1. SCNase was expressed as an apo-protein in E. coli

All SCNase subunits were highly expressed up to 5% of the

total soluble proteins when E. coli cells harboring pGE32 were

grown at 30 �C. However, the crude extract exhibited only

trace SCNase activity (3.0 · 10�3 U/mg). The activity was only

slightly enhanced (3.6 · 10�2 U/mg) when cobalt(II) chloride

was added to the culture medium at a final concentration of

0.40 mM together with IPTG. The recombinant SCNase was

purified from E. coli harboring pGE32 cultivated in the

cobalt-enriched medium. The subunit stoichiometry of the
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recombinant SCNase was estimated to be a:b:c = 1:1:1 by vi-

sual estimation of SDS–PAGE, which was in agreement with

that of the native SCNase. However, the specific activity of

the recombinant SCNase was 0.20 U/mg, only 0.6% of that

of the native SCNase. The amount of cobalt ions in the recom-

binant SCNase was determined to be 0.050 atom/abc hetero-

trimer by ICP-MS, clearly indicating that the recombinant

SCNase was an apo-protein. Apo-enzymes of Co-type NHase

from Bacillus sp. BR449 [16] and B. pallidus RAPc8 [13] were

activated by incubating crude NHase extracts at 50 �C in the

presence of 5 lM Co2+. However, apo-SCNase could not be

activated by the incubation at a temperature range of 4.0–

50 �C in the presence of 5 lM cobalt(II) chloride (data not

shown).

We determined the molecular weight and stoichiometry of

apo-SCNase by SEC-MALS (Fig. 1). Apo-SCNase eluted as

a mono-dispersed peak, indicating that apo-SCNase was not

an aggregate of the subunits but an appropriately assembled

complex. The molecular mass was estimated at 2.4 · 102 kDa,

demonstrating that apo-SCNase behaved as a hetero-dode-

camer, (abc)4. The result contradicted the previous observation

[2] that native SCNase was a hetero-hexamer, (abc)2, based on

SEC. To clarify the contradiction, the native and apo-enzymes

of SCNase were analyzed by SEC on Superdex 200 10/300 GL

(1.0 · 30 cm, Amersham Biosciences) equilibrated with the

same buffer as that used in the previous study [2]. Each form

of SCNase was eluted at 12.5 mL. From the SEC analysis,

the molecular weight of the native and apo-SCNases were esti-

mated as about 140 kDa. However, the elution profiles of both

the native and apo-enzymes of SCNase did not changed even

when the SEC column was equilibrated with the buffer used

in SEC-MALS. In general, the molecular weight determination

by SEC is not decisive because the elution volume of a protein

was influenced not only by its molecular weight but also by its

molecular shape. In addition, the elution time might be delayed

when a protein interacted with the chromatography resin. In

contrast, in SEC-MALS, the molecular weight was determined

only by the measurement of light scattering and refractive index
Fig. 1. Plot of the apparent molecular weight of apo-SCNase versus elution
mass estimated from a light scattering measurement against a slice with a 16.7
SEC monitored with the differential refractive index detector. The vertical sca
in Section 2.
of the eluted proteins [17]. Thus, we concluded that native as

well as apo-forms of SCNase have the heterododecameric

structure, (abc)4. Very recently, we elucidated the crystal struc-

tures of the native and apo-forms of SCNase and found that

both forms of SCNase have stable (abc)4 structure (Arakawa

et al., manuscript in preparation).

3.2. Expression of SCNase with the putative activator protein,

P15K

The above results suggest that SCNase requires an activator

protein for functional expression, like most Co- as well as Fe-

type NHases. Only NHase of Bucillus sp. BR449 was known to

be expressed functionally independently of P12K, correspond-

ing to Co-type NHase activator [16]. Generally, the genes of

Co-type NHase activators are 0.3–0.4 kb and located immedi-

ately downstream of the NHase genes [11–13,15,16]. Thus,

P15K encoded in orf1, locating just downstream of SCNase

genes, was considered a candidate for the SCNase activator,

even though it exhibited only limited homology (9–19% iden-

tity) with Co-type NHase activators (Fig. 2). When SCNase

was co-expressed with P15K in E. coli cells harboring both

pGE32 and pSAE30 at 30 �C, the SCNase activity of the crude

extract was more than 100 times enhanced by the addition of

cobalt(II) chloride at a concentration of 0.40 mM. The purified

recombinant SCNase contained 0.56 Co atom/abc hetero-tri-

mer and exhibited a level of the activity of 8.0 U/mg, 25% of

that of the native enzyme. Thus, P15K is likely to promote

the functional expression of SCNase in E. coli. The relatively

low catalytic activity may be due to low expression level of

P15K, although the P15K band could not be identified because

of the same mobility with the SCNase a subunit in SDS–

PAGE analysis. To increase the expression of P15K, we con-

structed the expression vectors, pSCNabgE30 and pSAE23b

in which the SCNase genes and the P15K gene were subcloned

downstream of T7lac promoter and T7 promoter, respectively.

Using the plasmids, SCNase and P15K were co-expressed in

E. coli, BL21-AI, where the expression of T7 RNA polymer-

ase was strictly controlled by the addition of arabinose. By
volume in SEC-MALS. The symbols represent the apparent molecular
lL volume. The curve indicates the elution profile of apo-SCNase from
le of the curve is arbitrarily. Other experimental conditions were shown



 1 MSSSIREEVHRHLGTVALMQPALH-QQTHAPAPTEITHTLFRAYTRVPHDVGGEADVPIE
 1 MPENNVEGRGGWQGTDTTPIPVLEGVRAHGRAWEELAPQYGVTNPDPPWKIDLETTCDML

 1 -----------MALCLTSLGSPRRLPWWS------ACTRPVSFSGKTGPRPSPPKSTLPR
 1 -----------MKSCENQPNESLLANMS-------EEVAPPRKNGELEFQEPWERRSFG-
 1 -----------MKSCENQPNESLLANMS-------EEVAPPRKNGELEFQEPWERRSFG-
 1 -------------MSEDTLTDRLPATG---------TAAPPRDNGELVFTEPWEATAFG-

P15k

putida
BR449
RAPc8
nhhG
nhlE  1 -----------MPRLNEQPHPGLEANLGDLVQNLPFNERIPRRSGEVAFDQAWEIRAFS-

 60 YHEKEEEIWELNTFATCECLAWRGVWTAEERRRKQNCDVGQTVYLGMPYYGRWLLTAARI
 61 AADSCVKSYDEIEPGSCVLPALE--------RRAEEDDLSETIYADVPFPERQLLALAHS

 44 SAGESVNDTYYRQWVSALEKLVA--------SLGLVTGGDVNSRAQEWKQAHLNTPHGHP
 42 MTLALYEEKLYSSWEDFRSRLIE--------EIKGWETAKQKENSDWNYYEHWLAALERL
 42 MTLALYEEKLYSSWEDFRSRLIE--------EIKGWETAKQKDNSDWNYYEHWLAALERL
 38 VAIALSDQKSY-EWEFFRQRLIH--------SIA-------EANGCEAYYESWTKALEAS
 49 IATALHGQGRF-EWDEFQSRLIE--------SIKQWEAEH-ATTEQWSYYERWMLALEEL

 120 LVDKQFVTLTELHNKIVEMRERVASGQGLGEYLPPKAK------------------
 113 MLKRGLFSEEELA------RQMEIVGQKLKSV------------------------

  96 ILLAHALCPPAID------PKHKHEPQRSPIKVVAAMA------------------
  94 VVETGMLN------------------------------------------------
  94 VVETGMLNKRDVD------TRTNEFLTGKRDEVFY---------------------
  82 VVDSGLISEDEIR------ERMESMAIID---------------------------
  99 LHDKGFVAGEELA------HRTEQVLATPAGAHHQHAVRDPIAVHAIGTRTTDSDG

P15k

putida
BR449
RAPc8
nhhG
nhlE

P15k

putida
BR449
RAPc8
nhhG
nhlE

Fig. 2. Alignment of the amino acid sequences of P15K, the SCNase b subunit and Co-type NHase activators. Conserved and homologous amino
acid residues between P15K and Co-type NHase activators are indicated by black and gray back grounds, respectively. Conserved amino acid
residues between P15K and the SCNase b subunit were indicated by solid boxes. Gaps (hyphens) were introduced to maximize the homology. Co-
type NHase activators are as follows: BR449, P12K from Bacillus sp. BR449 (16); RAPc8, P14K from B. pallidus RAPc8 (13); putida, P14K from
Pseudomonas putida 5B (12); nhhG from Rhodococcus rhodochorous J1 H-NHase (11); nhlE from Rhodococcus rhodochorous J1 L-NHase (15).
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optimizing the culture conditions, the activity of the crude

SCNase extract 4.2 times increased. The purified recombinant

SCNase possessed 0.86 Co atom/abc hetero-trimer and its cata-

lytic activity was 25 U/mg, 78% of that of the native enzyme. We

designated this active recombinant NHase as SCNase(+P15K).

3.3. Characterization of apo-SCNase and SCNase(+P15K)

SCNase(+P15K) was eluted at 12.5 min in SEC on Superdex

200 10/300 GL (1.0 · 30 cm, Amersham Biosciences) equili-

brated with 50 mM potassium phosphate, pH 7.8, containing

100 mM NaCl showing that SCNase(+P15K) is also (abc)4.

UV–Vis absorption spectrum of apo-SCNase showed only

one peak at 280 nm, while that of SCNase(+P15K) exhibited
Fig. 3. Absorption spectra of native SCNase, apo-SCNase and
SCNase(+P15K). Blue, red and green lines represent the absorption
spectra of native SCNase, apo-SCNase and SCNase(+P15K), respec-
tively. The concentration of each sample was 0.37 mg/mL in 50 mM
potassium phosphate, pH 7.5. All spectra were recorded at room
temperature with a Cary50 spectrophotometer (Varian, USA).
an extra shoulder peak above 300 nm (Fig. 3), which was very

similar to that of native SCNase [7]. The magnitude of the

shoulder at 330 nm was about 84% of that in native enzyme,

which was in good agreement with the Co content. The char-

acteristic shoulder is commonly observed in Co-type NHases

[21] and has been assigned as a ligand-to-metal charge transfer

band [22,23]. We investigated the post-translational modifica-

tions of the cysteine ligand residues in apo-SCNase and

SCNase(+P15K). Each recombinant SCNase was treated with

TPCK-trypsin after reduction and S-carboxymethylation and

then analyzed by ESI-LC/MS. In apo-SCNase, the mass spec-

trum of the metal-binding peptide, H124VVVCTLCSCYPR-

PIL-GQSPEWYR147 (HR24), showed a mass peak of m/z

1491.7 (Fig. 4A). This corresponded to the calculated m/z

value of the [M + 2H]2+ ion of HR24 with three carboxym-

ethyl (CM)-cysteines, indicating that no cysteine ligand was

modified to Cys-SO2H in apo-SCNase. In contrast, the magni-

tude of the m/z 1491 peak decreased dramatically and the in-

tense peak at m/z 1478.4 as well as the peaks at m/z 1465.7

and 1485.2 were observed in the mass spectrum of HR24 of

SCNase(+P15K) (Fig. 4B). Each peak was assigned by MS/MS

analyses (see the legend of Fig. 4). The relative abundance of

the m/z 1478 peak was estimated to be 74%, indicating that

about 70% of SCNase(+P15K) had the Cys-SO2H modification

at cCys131 like native SCNase. The presence of the m/z 1466

and 1486 peaks indicated that some of SCNase(+P15K) had

the different oxidation states in cCys131 or cCys133. However,

we should note that these mass peaks were also observed in the

mass spectrum of HR24 from native SCNase [7]. Thus, we

concluded that SCNase(+P15K) was the active holo-form of

SCNase. In other words, the functional heterologous expres-

sion of SCNase is promoted by P15K.

The present study indicates that P15K is responsible for the

incorporation of Co ion into the SCNase protein. Considering

the weak amino acid sequence homology between P15K and

the SCNase b subunit (Fig. 2), it is possible that P15K has a

chaperone-like activity and interacted with the SCNase c sub-
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Fig. 4. ESI-LC/MS spectra of the metal-binding peptide, HR24, of
apo-SCNase (A) and SCNase(+P15K) (B). The mass peaks with m/z
values of 1491, 1486, 1478 and 1466 correspond to the [M + 2H]2+ ion
of HR24 with three CM-cysteines (the calculated m/z value = 1491.7),
that with cCys131-SO3H and two CM-cysteines (the calculated m/z
value = 1486.9), that with c Cys131-SO2H and two CM-cysteines (the
calculated m/z value = 1478.9), and that with CM-cCys128, cCys131-
SO2H and cCys133-SO2H (the calculated m/z value = 1466.1), respec-
tively. The detailed condition of ESI-LC/MS was described previously
[20].
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unit to assist the incorporation of Co ion before the assembly

with a and b subunits as postulated in B. pallidus RAPc8

NHase [13]. Alternatively, we could not exclude the possibility

that P15K directly mediate the insertion of Co ion into the

SCNase protein. In the recombinant SCNase expressed in

E. coli harboring pGE32 and pSAE30, the catalytic activity

and relative abundance of the Cys-SO2H modification were

low, compared with its Co-content. The modification of cys-

teine residues might occur after the incorporation of Co ion.

The biochemical characterization of P15K is in progress in

our laboratory.
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