3 research outputs found

    Description of the mechanoreceptive lateral line and electroreceptive ampullary systems in the freshwater whipray, Himantura dalyensis

    No full text
    Mechanoreceptive and electroreceptive anatomical specialisations in freshwater elasmobranch fishes are largely unknown. The freshwater whipray, Himantura dalyensis, is one of a few Australian elasmobranch species that occur in low salinity (oligohaline) environments. The distribution and morphology of the mechanoreceptive lateral line and the electroreceptive ampullae of Lorenzini were investigated by dissection and compared with previous studies on related species. The distribution of the pit organs resembles that of a marine ray, Dasyatis sabina, although their orientation differs. The lateral line canals of H. dalyensis are distributed similarly compared with two marine relatives, H. gerrardi and D. sabina. However, convolutions of the ventral canals and proliferations of the infraorbital canal are more extensive in H. dalyensis than H. gerrardi. The intricate nature of the ventral, non-pored canals suggests a mechanotactile function, as previously demonstrated in D. sabina. The ampullary system of H. dalyensis is not typical of an obligate freshwater elasmobranch (i.e. H. signifer), and its morphology and pore distribution resembles those of marine dasyatids. These results suggest that H. dalyensis is euryhaline, with sensory systems adapted similarly to those described in marine and estuarine species.9 page(s

    Scaling of Activity Space in Marine Organisms across Latitudinal Gradients

    Get PDF
    Unifying models have shown that the amount of spaceused by animals (e.g., activity space, home range) scales allometricallywith body mass for terrestrial taxa; however, such relationships arefar less clear for marine species. We compiled movement data from1,596 individuals across 79 taxa collected using a continental passiveacoustic telemetry network of acoustic receivers to assess allometric scal-ing of activity space. We found thatectothermic marine taxa do exhibitallometric scaling for activity space, with an overall scaling exponentof 0.64. However, body mass alone explained only 35% of the varia-tion, with the remaining variation best explained by trophic positionfor teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponentsamong teleostfish species (0.07) than sharks (0.96), rays (0.55), andmarine reptiles (0.57). The allometric scaling relationship and scalingexponents for the marine taxonomic groups examined were lowerthan those reported from studies that had collated both marine andterrestrial species data derived using various tracking methods. Wepropose that these disparities arise because previous work integratedsummarized data across many studies that used differing methods forcollecting and quantifying activity space, introducing considerableuncertainty into slope estimates. Ourfindings highlight the benefitof using large-scale, coordinated animal biotelemetry networks to ad-dress cross-taxa evolutionary and ecological questions
    corecore