10 research outputs found

    The Use Of The Mother Tongue In Saudi EFL Classrooms

    Get PDF
    The issue of including or excluding the learner’s mother tongue in the EFL classroom has been the subject of ongoing discussion and controversy for a long time. This paper attempts to investigate the use of native Arabic in English classes at two Saudi technical colleges. The main objectives were to examine the purpose o L1 use and the attitudes of Saudi teachers and students towards the role of Arabic in the EFL classroom. Data were collected through two different types of questionnaires. Results indicated that the use of Arabic (L1) was for clarification purposes and that a balanced and judicious use of L1 in the EFL classroom by both teachers and students can be useful in the language learning process and may even be essential to increase learners’ comprehension

    Dynamics of electronic transitions and frequency dependence of negative capacitance in semiconductor diodes under high forward bias

    Get PDF
    We observed qualitatively dissimilar frequency dependence of negative capacitance under high charge injection in two sets of functionally different junction diodes: III-V based light emitting and Si-based non-light emitting diodes. Using an advanced approach based on bias activated differential capacitance, we developed a generalized understanding of negative capacitance phenomenon which can be extended to any diode based device structure. We explained the observations as the mutual competition of fast and slow electronic transition rates which are different in different devices. This study can be useful in understanding the interfacial effects in semiconductor heterostructures and may lead to superior device functionality

    Magnetic and Optical properties of strained films of multiferroic GdMnO3

    Get PDF
    The effects of strain on a film of mulitferroic GdMnO3 are investigated using both magnetometry and magneto-optic spectroscopy. Optical spectra, in the energy range 1.5eV - 3.5eV, were taken in Faraday geometry in an applied magnetic field and also at remanence. This yielded rich information on the effects of strain on the spin ordering in these films. Epitaxial films of GdMnO3 were grown on SrTiO3 and LaAlO3 substrates. The LaAlO3 was twinned and so produced a highly strained film whereas the strain was less for the film grown on SrTiO3. The Ne\'el temperatures and coercive fields were measured using zero field data and hysteresis loops obtained using a SQUID magnetometer. Optical absorption data agreed with earlier work on bulk materials. The two well known features in the optical spectrum, the charge transfer transition between Mn d states at ~2eV and the band edge transition from the oxygen p band to the d states at ~3eV are observed in the magnetic circular dichroism; however they behaved very differently both as a function of magnetic field and temperature. This is interpreted in terms of the magnetic ordering of the Mn spins.Comment: 9 pages of text including figure

    On Using Magnetic and optical methods to determine the size and characteristics of nanoparticles embedded in oxide semiconductors

    Full text link
    Films of oxides doped with transition metals are frequently believed to have magnetic inclusions. Magnetic methods to determine the amount of nanophases and their magnetic characteristics are described. The amount of the sample that is paramagnetic may also be measured. Optical methods are described and shown to be very powerful to determine which defects are also magnetic.Comment: Manuscript of poster to be presented at MMM-Intermag 2010. Accepted for publication in Magnetic Trans of IEE

    Magneto-optical properties of Co/ZnO multilayer films

    Get PDF
    Multilayer films of ZnO with Co were deposited on glass substrates then annealed in a vacuum. The magnetisation of the films increased with annealing but not the magnitude of the magneto-optical signals. The dielectric functions for the films were calculated using the MCD spectra. A Maxwell Garnett theory of a metallic Co/ZnO mixture is presented. The extent to which this explains the MCD spectra taken on the films is discussed.Comment: This paper was presented at ICM (2009) and is accepted in this form for the proceeding

    Enhanced magnetic properties in ZnCoAlO caused by exchangecoupling to Co nanoparticles

    Get PDF
    We report the results of a sequence of magnetisation and magneto-optical studies on laser ablated thin films of ZnCoAlO and ZnCoO that contain a small amount of metallic cobalt. The results are compared to those expected when all the magnetization is due to isolated metallic clusters of cobalt and with an oxide sample that is almost free from metallic inclusions. Using a variety of direct magnetic measurements and also magnetic circular dichroism we find that there is ferromagnetism within both the oxide and the metallic inclusions, and furthermore that these magnetic components are exchange-coupled when aluminium is included. This enhances both the coercive field and the remanence. Hence the presence of a controlled quantity of metallic nanoparticles in ZnAlO can improve the magnetic response of the oxide, thus giving great advantages for applications in spintronics

    New Organic–Inorganic Salt Based on Fluconazole Drug: TD-DFT Benchmark and Computational Insights into Halogen Substitution

    No full text
    In this study, we report the synthesis of a new organic–inorganic molecular salt of the clinically used antifungal drug fluconazole, (H2Fluconazole).SnCl6.2H2O. By detailed investigation and analysis of its structural properties, we show that the structure represents a 0D structure built of alternating organic and inorganic zig-zag layers along the crystallographic c-axis and the primary supramolecular synthons in this salt are hydrogen bonding, F···π and halogen bonding interactions. Magnetic measurements reveal the co-existence of weak ferromagnetic behavior at low magnetic field and large diamagnetic contributions, indicating that the synthesized material behaves mainly as a diamagnetic material, with very low magnetic susceptibility and with a band gap energy of 3.6 eV, and the salt is suitable for semiconducting applications. Extensive theoretical study is performed to explain the acceptor donor reactivity of this compound and to predict the Cl-substitution effect by F, Br and I. The energy gap, frontier molecular orbitals (FMOs) and the different chemical reactivity descriptors were evaluated at a high theoretical level. Calculations show that Cl substitution by Br and I generates compounds with more important antioxidant ability and the intramolecular charge transfer linked to the inorganic anion

    Magnetism from Co and Eu implanted into ZnO

    No full text
    Films of ZnO have been implanted with fluxes of Co and Eu ions so as to give a layer of Zn0.96Co0.04O or Zn0.96Eu0.04O or Zn0.92Co0.04Eu0.04O that is approximately 15 nm thick. The ZnO films were deposited by pulsed laser deposition and had an O-polar surface. The properties of the as-implanted films were compared with those obtained after annealing in air and vacuum. The amount of radiation damage was measured using Raman scattering. Measurements of the lattice constants and EXAFS demonstrated that after annealing in air the Co2+ were on Zn sites in the lattice and Eu3+ ions were surrounded by oxygen ions. The air-annealed films were ferromagnetic and the magnetic moment of the ZnCoEuO was close to the sum of that from ZnCoO and ZnEuO. This method of producing ferromagnetic ZnCoO and ZnEuO films was competitive with other methods including pulsed laser deposition

    Maghemite (γ-Fe2O3) and γ-Fe2O3-TiO2 Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency

    No full text
    In this report, the heating efficiencies of γ-Fe2O3 and hybrid γ-Fe2O3-TiO2 nanoparticles NPs under an alternating magnetic field (AMF) have been investigated to evaluate their feasible use in magnetic hyperthermia. The NPs were synthesized by a modified sol-gel method and characterized by different techniques. X-ray diffraction (XRD), Mössbauer spectroscopy and electron microscopy analyses confirmed the maghemite (γ-Fe2O3) phase, crystallinity, good uniformity and 10 nm core sizes of the as-synthesized composites. SQUID hysteresis loops showed a non-negligible coercive field and remanence suggesting the ferromagnetic behavior of the particles. Heating efficiency measurements showed that both samples display high heating potentials and reached magnetic hyperthermia (42 °C) in relatively short times with shorter time (~3 min) observed for γ-Fe2O3 compared to γ-Fe2O3-TiO2. The specific absorption rate (SAR) values calculated for γ-Fe2O3 (up to 90 W/g) are higher than that for γ-Fe2O3-TiO2 (~40 W/g), confirming better heating efficiency for γ-Fe2O3 NPs. The intrinsic loss power (ILP) values of 1.57 nHm2/kg and 0.64 nHm2/kg obtained for both nanocomposites are in the range reported for commercial ferrofluids (0.2–3.1 nHm2/kg). Finally, the heating mechanism responsible for NP heat dissipation is explained concluding that both Neel and Brownian relaxations are contributing to heat production. Overall, the obtained high heating efficiencies suggest that the fabricated nanocomposites hold a great potential to be utilized in a wide spectrum of applications, particularly in magnetic photothermal hyperthermia treatments
    corecore