26 research outputs found

    Creation of Controlled Defects Inside Colloidal Crystal Arrays with a Focused Ion Beam

    Get PDF
    In this work the reliability of the focused-ion-beam (FIB) patterning on polystyrene (PS) colloidal crystals at different scales is determined. Ordered arrays of PS spheres (465 nm) are successfully modified by selectively removing a single sphere. The water-vapor assisted FIB milling is crucial to obtain this result. Furthermore, isolated PS spheres are FIB drilled with or without chemically enhanced milling aiming at the exploration of the limits of such a technique. These controlled defects created using the FIB-assisted techniques may be helpful in preparing mockups of photonic crystals, sensors or as colloidal masks for diverse lithographic processes

    Lasing properties and nonlinearities of dyes under high power pumping

    Get PDF
    AbstractNitrogen lasers have been used for many years to make dye solutions lase. A nitrogen laser, which transverse electrical discharge in gas at atmospheric pressure has been built in our laboratory. It has been characterized and applied to pump different dyes: Rhodamine 6G, Coumarin 440, DOTCI, and pyranine in simple "on axis" geometric configuration. It has been shown that pyranine can lase in the absence of any optical external mirror cavity, this happens at very low threshold, and in different solvents. Dyes under consideration can be grouped into two major classes according to their lasing behavior independently on their concentration in the solvent: Rhodamine 6G and DOTCI can lase both axially or transversally and Coumarin 440 and pyranine can lase only axially. Other intriguing features have been observed that span from simultaneous multiple beam generation, to super fluorescence and to distribute axial pumping of dye solutions. A preliminary basis for understanding and controlling such processes is the spatial energy distribution and the energy density of the beam

    Microscopy characterization of doped fibers

    Get PDF
    The use of the Soft X-ray Contact Microscopy technique is discussed as a possible new tool to get information on dopant distribution in the core of single-mode optical fibers with 50 nm spatial resolution

    Contaminant effect on cellular metabolic differential pressure curves.

    Get PDF
    The possibility of a pressure monitoring system by differential pressure sensors to detect contaminant effects on cellular cultures metabolic activity is discussed using Saccharomyces cerevisiae, lymphocyte, and AHH1 cell cultures. Metabolic (aerobic and anaerobic) processes in cells are accompanied by CO2 production that induces changes in pressure values when cells are cultured in sealed vessels. These values are subsequently converted in voltage units and plotted pressure dynamics versus time. This procedure leads to a standard curve, typical of the cellular line, which characterizes cellular metabolism when all parameters are controlled, such as temperature and nutrients. Different phases appear in the S. cerevisiae differential pressure curve: an initial growth up to a maximum, followed by a decrement that leads to a typical "depression" (pressure values inside the test-tubes are lower than the initial one) after about 35 h from the beginning. The S. cerevisiae differential pressure curve is successfully used to test the effects of chemical (Amuchina(R), trieline) and physical (UV radiation, blue light, magnetic fields) contaminants. The same technique is applied to lymphocytes and AHH1 cultures to investigate the effects generated by a 72-h exposure to a 50-Hz, 60-muT electromagnetic field. Lymphocyte samples, cultured in a PHA medium, grow less than control ones, but exhibit a greater metabolic activity: changes in the exposure system configuration influence neither sample growth differences nor metabolic response variations between control and irradiated samples, while all the other irradiation parameters remain constant. Control and irradiated lymphocyte samples, without PHA in culture medium, show the same behavior both during irradiation and metabolic test. AHH1 control and irradiated samples show no difference both in growth percentage during irradiation and in metabolic activity. Different cell cultures respond to the same stimulus in different manners. (C) 2004 Society of Photo-Optical Instrumentation Engineers

    Magnetic flux quantization and Josephson behaviour in living systems

    Get PDF
    The proposal of coherent electromagnetic processes as the engine for biological dynamics suggests that Josephson effects could be present in living cells. Positive experimental evidence is reported and discussed

    nanoparticles production and inclusion in s aureus incubated with polyurethane an electron microscopy analysis

    Get PDF
    This study shows that submicron/nanoparticles found in bacterial cells (S. aureus) incubated with polyurethane (a material commonly used for prostheses in odontostomatology) are a consequence of biodestruction. The presence of polyurethane nanoparticles into bacterial vesicles suggests that the internalization process occurs through endocytosis. TEM and FIB/SEM are a suitable set of correlated instruments and techniques for this multi facet investigation: polyurethane particles influence the properties of S. aureus from the morpho-functional standpoint that may have undesirable effects on the human body. S. aureus and C. albicans are symbiotic microorganisms; it was observed that C. albicans has a similar interaction with polyurethane and an increment of the biodestruction capacity is expected by its mutual work with S. aureus

    How to study biological samples by FIB/SEM?

    Full text link
    The focused ion beam (FIB)/scanning electron microscope (SEM) is a scanning microscope with an electron column and an ion column embedded in the same specimen chamber; both beams are aiming at the same point on the specimen surface. The FIB, generated by a Ga Liquid Metal Ion Source (LMIS), impacts the sample normal to the surface and can be focused to a spot as small as few nanometres. Th
    corecore