35 research outputs found

    Paracrine Hedgehog Signaling Drives Metabolic Changes in Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) typically develop in cirrhosis, a condition characterized by Hedgehog (Hh) pathway activation and accumulation of Hh-responsive myofibroblasts (MF). Although Hh signaling generally regulates stromal-epithelial interactions that support epithelial viability, the role of Hh-dependent MF in hepatocarcinogenesis is unknown. Here we used human HCC samples, a mouse HCC model, and hepatoma cell/MF co-cultures to examine the hypothesis that Hh signaling modulates MF metabolism to generate fuels for neighboring malignant hepatocytes. The results identify a novel paracrine mechanism whereby malignant hepatocytes produce HH-ligands to stimulate glycolysis in neighboring MF, resulting in release of MF-derived lactate that the malignant hepatocytes use as an energy source. This discovery reveals new diagnostic and therapeutic targets that might be exploited to improve the outcomes of cirrhotic patients with HCC

    Thyroid hormone receptor alpha modulates fibrogenesis in hepatic stellate cells

    Get PDF
    Objective: Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or β (TRα/β). Here, we evaluated the influence of TH in hepatic fibrogenesis. Design: Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFβ in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. Results: TRα and TRβ expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFβ-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFβ signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. Conclusion: These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFβ signalling pathway. Thus, the TH–TR axis may be a valuable target for future therapy of liver fibrosis.</p

    Alcohol Activates the Hedgehog Pathway and Induces Related Procarcinogenic Processes in the Alcohol-Preferring Rat Model of Hepatocarcinogenesis

    Get PDF
    Alcohol consumption promotes hepatocellular carcinoma (HCC). The responsible mechanisms are not well understood. Hepatocarcinogenesis increases with age and is enhanced by factors that impose a demand for liver regeneration. Because alcohol is hepatotoxic, habitual alcohol ingestion evokes a recurrent demand for hepatic regeneration. The alcohol-preferring (P) rat model mimics the level of alcohol consumption by humans who habitually abuse alcohol. Previously, we showed that habitual heavy alcohol ingestion amplified age-related hepatocarcinogenesis in P-rats, with over 80% of alcohol-consuming P rats developing HCCs after 18 months of alcohol exposure, compared to only 5% of water-drinking controls

    Hedgehog Signaling Antagonist Promotes Regression of Both Liver Fibrosis and Hepatocellular Carcinoma in a Murine Model of Primary Liver Cancer

    Get PDF
    Chronic fibrosing liver injury is a major risk factor for hepatocarcinogenesis in humans. Mice with targeted deletion of Mdr2 (the murine ortholog of MDR3) develop chronic fibrosing liver injury. Hepatocellular carcinoma (HCC) emerges spontaneously in such mice by 50–60 weeks of age, providing a model of fibrosis-associated hepatocarcinogenesis. We used Mdr2−/− mice to investigate the hypothesis that activation of the hedgehog (Hh) signaling pathway promotes development of both liver fibrosis and HCC

    Loss of pericyte smoothened activity in mice with genetic deficiency of leptin

    No full text
    Abstract Background Obesity is associated with multiple diseases, but it is unclear how obesity promotes progressive tissue damage. Recovery from injury requires repair, an energy-expensive process that is coupled to energy availability at the cellular level. The satiety factor, leptin, is a key component of the sensor that matches cellular energy utilization to available energy supplies. Leptin deficiency signals energy depletion, whereas activating the Hedgehog pathway drives energy-consuming activities. Tissue repair is impaired in mice that are obese due to genetic leptin deficiency. Tissue repair is also blocked and obesity enhanced by inhibiting Hedgehog activity. We evaluated the hypothesis that loss of leptin silences Hedgehog signaling in pericytes, multipotent leptin-target cells that regulate a variety of responses that are often defective in obesity, including tissue repair and adipocyte differentiation. Results We found that pericytes from liver and white adipose tissue require leptin to maintain expression of the Hedgehog co-receptor, Smoothened, which controls the activities of Hedgehog-regulated Gli transcription factors that orchestrate gene expression programs that dictate pericyte fate. Smoothened suppression prevents liver pericytes from being reprogrammed into myofibroblasts, but stimulates adipose-derived pericytes to become white adipocytes. Progressive Hedgehog pathway decay promotes senescence in leptin-deficient liver pericytes, which, in turn, generate paracrine signals that cause neighboring hepatocytes to become fatty and less proliferative, enhancing vulnerability to liver damage. Conclusions Leptin-responsive pericytes evaluate energy availability to inform tissue construction by modulating Hedgehog pathway activity and thus, are at the root of progressive obesity-related tissue pathology. Leptin deficiency inhibits Hedgehog signaling in pericytes to trigger a pericytopathy that promotes both adiposity and obesity-related tissue damage

    Additional file 1: Figure S1. of Loss of pericyte smoothened activity in mice with genetic deficiency of leptin

    No full text
    Sonic Hedgehog Gene Expression in Leptin-deficient HSCs. Figure S2. Genetic Leptin Receptor ObRb Deficiency Suppresses Hh Activity in HSCs and Changes HSC Phenotype. Table S1. Sequence of primers used in experiments. Table S2. Antibodies Used for FACS Analysis (DOC 2609 kb

    Targeting Myosin 1c Inhibits Murine Hepatic Fibrogenesis

    No full text
    Myosin 1c (Myo1c) is an unconventional myosin that modulates signaling pathways involved in tissue injury and repair. In this study, we observed that Myo1c expression is significantly upregulated in human chronic liver disease such as nonalcoholic steatohepatitis (NASH) and in animal models of liver fibrosis. High throughput data from the GEO-database identified similar Myo1c upregulation in mice and human liver fibrosis. Notably, TGF-β stimulation to hepatic stellate cells (HSCs, the liver pericyte and key cell type responsible for the deposition of extracellular matrix upregulates Myo1c expression, while genetic depletion or pharmacological inhibition of Myo1c blunted TGF-β induced fibrogenic responses, resulting in repression of α-SMA and Col1α1 mRNA. Myo1c deletion also decreased fibrogenic processes such as cell proliferation, wound healing response and contractility when compared with vehicle treated HSCs. Importantly, phosphorylation of SMAD2 and SMAD3 were significantly blunted upon Myo1c inhibition in GRX cells as well as Myo1c-KO MEFs upon TGF-β stimulation. Using the genetic Myo1c knockout (Myo1c-KO) mice, we confirmed that Myo1c is critical for fibrogenesis as Myo1c-KO mice were resistant to CCl4 induced liver fibrosis. Histological and immunostaining analysis of liver sections showed that deposition of collagen fibers and α-SMA expression were significantly reduced in Myo1c-KO mice upon liver injury. Collectively, these results demonstrate that Myo1c-mediates hepatic fibrogenesis by modulating TGF-β signaling and suggest that inhibiting this process may have clinical application in treating liver fibrosis
    corecore