19 research outputs found

    Biologiczna i antyrakowa aktywność wybranych naturalnych produktów

    Get PDF
    Cancer continues to be one of the major causes of death worldwide. In recent years, the concept of cancer chemoprevention and treatment with natural occurring agents has evolved greatly. In this review work the biological activity and protective effects against cancer of some  natural products - coffee, caffeic acid, caffeic acid phenethyl ester (CAPE), chlorogenic acid, quercetin and curcumin are presented. It seems that the most natural products with anticancer activity act as strong antioxidants and/or modify the activity of one or more protein kinases involved in cell cycle control. The results of in vitro and in vivo studies showed that some of them may be useful as potential chemotherapeutic or chemopreventive anticancer drugs or adjuvants in complex anticancer therapy.Rak pozostaje jedną z głównych przyczyn zgonów na świecie. W ostatnich latach obserwuje się znaczny wzrost zainteresowania chemoprewencją i wykorzystaniem naturalnych produktów w leczeniu schorzeń nowotworowych. W prezentowanej pracy przeglądowej opisano aktywność biologiczną i działanie ochronne przed rakiem wybranych naturalnych produktów, jak: kawa, kwas kawowy, fenylowy ester kwasu kawowego (CAPE), kwas chlorogenowy, kwercetyna i kurkumina. Liczne dane naukowe potwierdzają ich silne działanie przeciwnowotworowe jako przeciwutleniaczy i/lub substancji modyfikujących aktywność kinaz białkowych i wpływających na kontrolę cyklu komórkowego. Wyniki badań in vitro i in vivo wykazały, że niektóre z nich mogą być przydatne jako potencjalne chemiotera-peutyki lub leki chemoprewencyjne w złożonej terapii przeciwnowotworowej

    Synthesis, Spectroscopic, and Theoretical Study of Copper and Cobalt Complexes with Dacarbazine

    Get PDF
    Dacarbazine (DAC) 5-(3,3-dimethyl-1-triazenyl)imidazole-4-carboxamide is an imidazolecarboxamide derivative that is structurally related to purines. DAC belongs to the triazene compounds, which are a group of alkylating agents with antitumor and mutagenic properties. DAC is a non-cell cycle specific drug, active in all phases of the cellular cycle. In the frame of this work the 3d metal complexes (cobalt and copper) with dacarbazine were synthesized. Their spectroscopic properties by the use of FT-IR, FT-Raman, and 1HNMR were studied. The structures of dacarbazine and its complexes with copper(II) and cobalt(II) were calculated using DFT methods. The effect of metals on the electronic charge distribution of dacarbazine was discussed on the basis of calculated NBO atomic charges. The reactivity of metal complexes in relation to ligand alone was estimated on the basis of calculated energy of HOMO and LUMO orbitals. The aromaticity of the imidazole ring in dacarbazine and the complexes were compared (on the basis of calculated geometric indices of aromaticity). Thermal stability of the investigated 3d-metal complexes with dacarbazine and the products of their thermal decomposition were analyzed.Studies have been carried out in the framework of the work no. WZ/WB-IIS/5/2020 in Bialystok University of Technology and financed from the funds for Science, Ministry of Science and Higher Education of Poland.Grzegorz Świderski: [email protected] Łaźny: [email protected]ł Sienkiewicz: [email protected] Kalinowska: [email protected] Świsłocka: [email protected] Osman Acar: [email protected] Golonko: [email protected] Matejczyk: [email protected]łodzimierz Lewandowski: [email protected] Świderski - Department of Chemistry, Biology and Biotechnology, Bialystok University of TechnologyRyszard Łaźny - Faculty of Chemistry, University of BialystokMichał Sienkiewicz - Faculty of Chemistry, University of BialystokMonika Kalinowska - Department of Chemistry, Biology and Biotechnology, Bialystok University of TechnologyRenata Świsłocka - Department of Chemistry, Biology and Biotechnology, Bialystok University of TechnologyAli Osman Acar - Material Science and Nanotechnology Engineering, TOBB University of Economics and TechnologyAleksandra Golonko - Institute of Agricultural and Food Biotechnology, Department of MicrobiologyMarzena Matejczyk - Department of Chemistry, Biology and Biotechnology, Bialystok University of TechnologyWłodzimierz Lewandowski - Department of Chemistry, Biology and Biotechnology, Bialystok University of TechnologySerrone, L.; Zeuli, M.; Sega, F.M.; Cognetti, F. Dacarbazine-based chemotherapy for metastatic melanoma: Thirty-year experience overview. J. Exp. Clin. Cancer Res. 2000, 19, 21–34.Reid, J.M.; Kuffel, M.J.; Miller, J.K.; Rios, R.; Ammes, M.M. Metabolic activation of dacarbazine by human cytochromes p450: The role of CYP1A1, CYP1A2e CYP2E1. Clin. Cancer Res. 1999, 5, 2192–2197.Nussbaumera, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta 2011, 85, 2265–2289.Moody, C.L.; Wheelhouse, R.T. The Medicinal Chemistry of Imidazotetrazine Prodrugs. Pharmaceuticals 2014, 7, 797–838.Bonmassar, L.; Marchesi, F.; Pascale, E.; Franzese, O.; Margison, G.P.; Bianchi, A.; D’Atri, S.; Bernardini, S.; Lattuada, D.; Bonmassar, E.; et al. Triazene compounds in the treatment of acute myeloid leukemia: A short review and a case report. Curr. Med. Chem. 2013, 20, 2389–2401.Marchesi, F.; Turriziani, M.; Tortorelli, G.; Avvisati, G.; Torino, F.; Vecchis, L.D. Triazene compounds: Mechanism of action and related DNA repair systems. Pharmacol. Res. 2007, 56, 275–287.Pourahmad, J.; Amirmostofian, M.; Kobarfard, F.; Shahraki, J. Biological reactive intermediates that mediate dacarbazine cytotoxicity. Cancer Chemother. Pharmacol. 2009, 65, 89–96.Hayward, I.P.; Parson, P.G. Epigenetic effects of the methylating agent 5-(3-dimethyl-1-triazeno)-imidazole-4-carboxamide in human melanoma cells. Aust. J. Exp. Biol. Med. Sci. 1984, 62, 597–606.Al-Qatati, A.; Aliwaini, S. Combined pitavastatin and dacarbazine treatment activates apoptosis and autophagy resulting in synergistic cytotoxicity in melanoma cells. Oncol. Lett. 2017, 14, 7993–7999.Naserian, M.; Ramazani, E.; Iranshahi, M.; Tayarani-Najaran, Z. The Role of SAPK/JNK pathway in the synergistic effects of metformin and dacarbazine on apoptosis in Raji and Ramos lymphoma cells. Curr. Mol. Pharmacol. 2018, 11, 336–342.Finotello, R.; Stefanello, D.; Zini, E.; Marconato, L. Comparison of doxorubicin–cyclophosphamide with doxorubicin–dacarbazine for the adjuvant treatment of canine hemangiosarcoma. Vet. Comp. Oncol. 2015, 15, 25–35.Song, M.; Zhang, R.; Wang, X. Nano-titanium dioxide enhanced biosensing of the interaction of dacarbazine with DNA and DNA bases. Mater. Lett. 2006, 60, 2143–2147.Shen, Q.; Wang, X.; Fu, D. The amplification effect of functionalized gold nanopar-ticles on the binding of anticancer drug dacarbazine to DNA and DNA bases. Appl. Surf. Sci. 2008, 255, 577–580.Matejczyk, M.; Świsłocka, R.; Golonko, A.; Lewandowski, W.; Hawrylik, E. Cytotoxic, genotoxic and antimicrobial activity of caffeic and rosmarinic acids and their lithium, sodium and potassium salts as potential anticancer compounds. Adv. Med. Sci. 2008, 63, 14–21.Jabłońska-Trypuć, A.; Świderski, G.; Krętowski, R.; Lewandowski, W. Newly synthesized doxorubicin complexes with selected metals—Synthesis, structure and anti-breast cancer activity. Molecules 2017, 22, 1106.Trynda-Lemiesz, L.; Śliwińska-Hill, U. Kompleksy metali w terapii nowotworowej. Teraźniejszość i przyszłość. J. Oncol. 2011, 61, 465–474.Kumari, T.; Shukla, J.; Joshin, S. Study on the complex formation and anticancer effect of complex, zinc(II)-dacarbazine. Int. J. Chem. Sci. 2011, 9, 1751–1762.Shukla, J.; Pitre, K.S. Role of bio-metal Fe(III) in anticancer effect of dacarbazine. Indian J. Physiol. Pharmacol. 1998, 42, 223–230.Temerk, Y.; Ibrahim, H.I. Binding mode and thermodynamic studies on the interaction of the anticancer drug dacarbazine and dacarbazine–Cu(II) complex with single and double stranded DNA. J. Pharm. Biomed. Anal. 2014, 95, 26–33.Lewandowski, W.; Kalinowska, M.; Lewandowska, H. The influence of metals on the electronic system of biologically important ligands, Spectroscopic study of benzoates, salicylates, nicotinates and isoorates. Review. J. Inorg. Biochem. 2005, 99, 1407–1423.Koczoń, P.; Hrynaszkiewicz, T.; Świsłocka, R.; Samsonowicz, M.; Lewandowski, W. Spectroscopic (Raman, FT-IR and NMR) study of alkaline metal nicotinates and isonicotinates. Vib. Spectrosc. 2003, 33, 215–222.Lewandowska, M.; Janowski, A.; Lewandowski, W. Spectroscopic Investigations on Lanthanide Complexes with Salicylic Acid. Can. J. Spectr. 1984, 29, 87–92.Lewandowski, W.; Kalinowska, M.; Lewandowska, H. The influence of halogens on the electronic system of biologically important ligands. Spectroscopic study of halogenobenzoic acids, halogenobenzoates and 5-halogenouracils. Review. Inorg. Chim. Acta 2005, 358, 2155–2166.Koczoń, P.; Piekut, J.; Borawska, M.; Lewandowski, W. Vibrational structure and antimicrobial activity of selected isonicotinates, potassium picolinate and nicotinate. J. Mol. Struct. 2003, 651–653, 651–656.Kalinowska, M.; Borawska, M.; Świsłocka, R.; Piekut, J.; Lewandowski, W. Spectroscopic (IR, Raman, UV, 1H and 13C NMR) and microbiological studies of Fe(III), Ni(II), Cu(II), Zn(II) and Ag(I) picolinates. J. Mol. Struct. 2007, 834–836, 419–425.Świderski, G.; Świsłocka, R.; Łyszczek, R.; Wojtulewski, S.; Samsonowicz, M.; Lewandowski, W. Thermal, spectroscopic, X-ray and theoretical studies of metal complexes (sodium, manganese, copper, nickel, cobalt and zinc) with pyrimidine-5-carboxylic and pyrimidine-2-carboxylic acids. J. Therm. Anal. Calorim. 2019, 138, 2813–2837.Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Wilczewska, A.Z.; Pietryczuk, A.; Cudowski, A.; Lewandowski, W. The influence of selected transition metal ions on the structure, thermal and microbiological properties of pyrazine-2-carboxylic acid. Polyhedron 2020, 175, 114173.Świderski, G.; Łyszczek, R.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W. Comparison of structural, spectroscopic, theoretical and thermal properties of metal complexes (Zn, Mn (II), Cu (II), Ni (II) and Co (II)) of pyridazine-3- carboxylic acid and pyridazine-4-carboxylic acids. Inorg. Chim. Acta 2020, 512, 119865.Świderski, G.; Kalinowska, M.; Wilczewska, A.Z.; Malejko, J.; Lewandowski, W. Lanthanide complexes withpyridinecarboxylic acids–Spectroscopic and thermal studies. Polyhedron 2018, 150, 97–109.Świderski, G.; Kalinowska, M.; Rusinek, I.; Samsonowicz, M.; Rzączyńska, Z.; Lewandowski, W. Spectroscopic (IR, Raman) and thermogravimetric studies of 3d-metal cinchomeronates and dinicotinates. J. Therm. Anal. Calorim. 2016, 126, 1521–1532.Świderski, G.; Lewandowska, H.; Świsłocka, R.; Wojtulewski, S.; Siergiejczyk, L.; Wilczewska, A.Z.; Misztalewska, I. Spectroscopic (IR, Raman, NMR), thermal and theoretical (DFT) study of alkali metal dipicolinates (2,6) and quinolinates (2,3). Arab. J. Chem. 2019, 12, 4414–4426.Padnya, P.; Shibaeva, K.; Arsenyev, M.; Baryshnikova, S.; Terenteva, O.; Shiabiev, I.; Khannanov, A.; Boldyrev, A.; Gerasimov, A.; Grishaev, D.; et al. Catechol-Containing Schiff Bases on Thiacalixarene: Synthesis, Copper (II) Recognition, and Formation of Organic-Inorganic Copper-Based Materials. Molecules 2021, 26, 2334.Colombo, A.; Dragonetti, C.; Roberto, D.; Fagnani, F. Copper complexes as alternative redox mediators in dye-sensitized solar cells. Molecules 2021, 26, 194.Pessoa, J.C.; Correia, I. Misinterpretations in Evaluating Interactions of Vanadium Complexes with Proteins and Other Biological Targets. Inorganics 2021, 9, 17.Soldatović, T. Mechanism of Interactions of Zinc(II) and Copper(II) Complexes with Small Biomolecules. In Basic Concepts Viewed from Frontier in Inorganic Coordination Chemistry; IntechOpen: London, UK, 2018.De Souza, I.C.A.; De Souza Santana, S.; Gómez, J.G.; Guedes, G.P.; Madureira, J.; De Ornelas Quintal, S.M.; Lanznaster, M. Investigation of cobalt(iii)-phenylalanine complexes for hypoxia-activated drug delivery. Dalton Trans. 2020, 49, 16425–16439.Gaussian; Version 9, Revision A.02; Gaussian Inc.: Wallingford, CT, USA, 2016.Krygowski, T.M.; Cyrański, M. Separation of the energetic and geometric contributions to the aromaticity. Part IV. A general model for thep-electron systems. Tetrahedron 1996, 52, 10255–10264.Bird, C. A new aromaticity index and its application to fivemembered ring heterocycles. Tetrahedron 1985, 41, 1409–1414.Weinhold, F.; Landis, C.R. Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2001, 2, 91–104.Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791.Dassault Systèmes. Biovia Discovery Studio Modeling Environment; Dassault Systèmes Biovia: San Diego, CA, USA, 2016; Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/ (accessed on 13 June 2021).Pettersen, E.F.; Goodard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612.Gunasekaran, S.; Kumaresan, S.; Arunbalaji, R.; Anand, G.; Srinivasan, S. Density functional theory study of vibrational spectra, and assignment of fundamental modes of dacarbazine. J. Chem. Sci. 2008, 120, 315–324.Freeman, H.C.; Hutchinson, N.D. The crystal structure of the anti-tumor agent 5-(3,3-dimethyl-1-triazenyl) imidazole-4-carboxamide. Acta Crystall. Sec. B 1979, 35, 2051–2054.Freeman, H.C.; Hutchinson, N.D. The crystal structures of two copper(II) complexes of the antitumor agent 5-(3,3-dimethyl-1-triazenyl) imidazole-4-carboxamide. Acta Crystall. Sec. B 1979, 35, 2045–2050.Świderski, G.; Wilczewska, A.Z.; Świsłocka, R.; Kalinowska, M.; Lewandowski, W. Spectroscopic (IR, Raman, UV–Vis) study and thermal analysis of 3d-metal complexes with 4-imidazolecarboxylic acid. J. Therm. Anal. Calorim. 2018, 134, 513–525.Fukui, K. Role of frontier orbitals in chemical reactions. Science 1982, 218, 747–754.Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924.Samsonowicz, M. Molecular structure of phenyl- and phenoxyacetic acids—Spectroscopic and theoretical study. Spectrochim. Acta A 2014, 118, 1386–1425.Ahmad, I.; Ahmad, M. Dacarbazine as a minor groove binder of DNA: Spectroscopic, biophysical and molecular docking studies. Int. J. Biol. Macromol. 2015, 79, 193–200.Wang, X.; Li, Y.; Gong, S.; Fu, D. A spectroscopic study on the DNA binding behavior of the anticancer drug dacarbazine. Spectrosc. Lett. 2002, 35, 751–756.Radi, A.E.; Eissa, A.; Nassef, H.M. Voltammetric and spectroscopic studies on the binding of the antitumor drug dacarbazine with DNA. J. Electroanal. Chem. 2014, 717–718, 24–28.141212

    Endocrine disrupting compounds and its biological activity

    No full text
    Zanieczyszczenie środowiska naturalnego związkami chemicznymi, pochodzącymi z przemysłu oraz rozwoju nowych technologii nieodłącznie związane jest z wykorzystaniem niebezpiecznych dla zdrowia ludzi substancji, takich jak: polichlorowane bifenyle, dioksyny, pestycydy, fungicydy, herbicydy, składniki wyrobów plastikowych, leki, substancje wykazujące działanie przeciwdrobnoustrojowe oraz przeciwogniowe. Tego rodzaju związki zaliczane są do grupy związków endokrynnie aktywnych (EDCs), mających zdolność modulacji aktywności układu hormonalnego oraz przyczyniających się do rozwoju anomalii reprodukcyjnych. Stąd, istnieje ogromna potrzeba monitorowania oraz ograniczenia niebezpiecznych związków chemicznych w wodach, glebie, powietrzu i żywności. W prezentowanej pracy przeglądowej ogólnie opisano wybrane grupy EDCs, metody ich detekcji oraz ich wpływ na system rozrodczy i metabolizm organizmów żywych.Contamination of environment with synthetic chemical compounds, originating from the industralisation and technological development, connected with widespread use of hazardous substances such as: pesticides, plasticizers, drugs, antimicrobials, and flame retardants effects on human health. These chemicals called endocrine-disrupting compounds (EDCs) can modulate the activity of endocrine system and result in developmental and reproductive abnormalities. So, there is a need of monitoring and limitation of such dangerous chemicals in food and water. In our review paper the characterization of selected EDCs is presented. Current methods of EDCs detection and potential impact of these compounds on reproductive system development and metabolism are also described

    Escherichia Coli-Lux Biosensor Used to Monitor the Cytotoxicity and Genotoxicity of Pharmacological Residues in Environment

    No full text
    The aim of the study was to evaluate the usefulness of Escherichia coli K-12 RFM 443 recA::lux for cytotoxicity and genotoxicity monitoring of metoprolol in the environment. Metoprolol is one of the most popular cardiac drug which belongs to the group of β–blockers. The drug was applied at concentrations ranging from 0.01 µg/cm3 to 100 µg/cm3. The conducted studies are preliminary studies aimed at validation of the recA::lux gene construct in the direction of determining its sensitivity to metoprolol. The drug concentrations were selected experimentally to obtain a positive luminescence response. Obtained data indicated the influence of metoprolol on lux gene expression and recA promoter activity based on the use of laboratory samples using PBS buffer. Results indicate a potential possibility of using a bacterial biosensor Escherichia coli K - 12 RFM 443 with recA::lux gene fusion in cytotoxicity and genotoxicity monitoring of the cardiac drugs residue in the environment

    Escherichia Coli-Lux Biosensor Used to Monitor the Cytotoxicity and Genotoxicity of Pharmacological Residues in Environment

    No full text
    The aim of the study was to evaluate the usefulness of Escherichia coli K-12 RFM 443 recA::lux for cytotoxicity and genotoxicity monitoring of metoprolol in the environment. Metoprolol is one of the most popular cardiac drug which belongs to the group of β–blockers. The drug was applied at concentrations ranging from 0.01 µg/cm3 to 100 µg/cm3. The conducted studies are preliminary studies aimed at validation of the recA::lux gene construct in the direction of determining its sensitivity to metoprolol. The drug concentrations were selected experimentally to obtain a positive luminescence response. Obtained data indicated the influence of metoprolol on lux gene expression and recA promoter activity based on the use of laboratory samples using PBS buffer. Results indicate a potential possibility of using a bacterial biosensor Escherichia coli K - 12 RFM 443 with recA::lux gene fusion in cytotoxicity and genotoxicity monitoring of the cardiac drugs residue in the environment

    POTENTIAL APPLICATIONS OF SOS-GFP BIOSENSOR TO IN VITRO RAPID SCREENING OF CYTOTOXIC AND GENOTOXIC EFFECT OF ANTICANCER AND ANTIDIABETIC PHARMACIST RESIDUES IN SURFACE WATER

    No full text
    Escherichia coli K-12 GFP-based bacterial biosensors allowed the detection of cytotoxic and genotoxic effect of anticancer drug– cyclophosphamide and antidiabetic drug – metformin in PBS buffer and surface water. Experimental data indicated that recA::gfpmut2 genetic system was sensitive to drugs and drugs mixture applied in experiment. RecA promoter was a good bioindicator in cytotoxic and genotoxic effect screening of cyclophosphamide, metformin and the mixture of the both drugs in PBS buffer and surface water. The results indicated that E. coli K-12 recA::gfp mut2 strain could be potentially useful for first-step screening of cytotoxic and genotoxic effect of anticancer and antidiabetic pharmacist residues in water. Next steps in research will include more experimental analysis to validate recA::gfpmut2 genetic system in E. coli K-12 on different anticancer drugs

    Environmental Application of Reporter-Genes Based Biosensors for Chemical Contamination Screening

    No full text
    The paper presents results of research concerning possibilities of applications of reporter-genes based microorganisms, including the selective presentation of defects and advantages of different new scientific achievements of methodical solutions in genetic system constructions of biosensing elements for environmental research. The most robust and popular genetic fusion and new trends in reporter genes technology – such as LacZ (β-galactosidase), xylE (catechol 2,3-dioxygenase), gfp (green fluorescent proteins) and its mutated forms, lux (prokaryotic luciferase), luc (eukaryotic luciferase), phoA (alkaline phosphatase), gusA and gurA (β-glucuronidase), antibiotics and heavy metals resistance are described. Reporter-genes based biosensors with use of genetically modified bacteria and yeast successfully work for genotoxicity, bioavailability and oxidative stress assessment for detection and monitoring of toxic compounds in drinking water and different environmental samples, surface water, soil, sediments

    Environmental Application of Reporter-Genes Based Biosensors for Chemical Contamination Screening

    No full text
    The paper presents results of research concerning possibilities of applications of reporter-genes based microorganisms, including the selective presentation of defects and advantages of different new scientific achievements of methodical solutions in genetic system constructions of biosensing elements for environmental research. The most robust and popular genetic fusion and new trends in reporter genes technology – such as LacZ (β-galactosidase), xylE (catechol 2,3-dioxygenase), gfp (green fluorescent proteins) and its mutated forms, lux (prokaryotic luciferase), luc (eukaryotic luciferase), phoA (alkaline phosphatase), gusA and gurA (β-glucuronidase), antibiotics and heavy metals resistance are described. Reporter-genes based biosensors with use of genetically modified bacteria and yeast successfully work for genotoxicity, bioavailability and oxidative stress assessment for detection and monitoring of toxic compounds in drinking water and different environmental samples, surface water, soil, sediments

    SELENO-L-METHIONINE MODULATE THE TOXIC EFFECT OF NEW DOXORUBICIN METAL COMPLEXES IN PROKARYOTIC MODEL –ESCHERICHIA COLI RFM443 RECA::LUX

    No full text
    Abstract: The main problem of modern cancer therapy is their resistance to the drugs used and the toxicity of drugs to healthy cells of the human body. Hope is natural substances that are protective of cells and often support the action of standard anticancer chemotherapy. Among them are selenium compounds. In the present study, we examined the cytotoxic and genotoxic potency of doxorubicin (DOX) metal complexes as new anticancer drug candidates. We also measured the effect of simultaneous administration of seleno –L-methionine as biologically active agent with DOX and its complexes with Mn, Mg, Fe, Co and Ni in prokaryotic model - Escherichia coli RFM443 with plasmid transcriptional fusion of recA promoter and luxCDABE as a reporter gene. The results obtained by us, indicate high biological activity of metal complexes with doxorubicin. The strongest modulatory effect was observed using the DOX complexes with Co and Ni compared to the DOX. The DOX complexes with Mg, Mn and Fe also showed relatively high biological activity. Simultaneous bacteria culture treatment with SeMet decreased the values of the DOX and its metal complexes cyto- and genotoxic parameters. These results encourage further research to assess the value of the doxorubicin metal complexes as new cytostatic drug candidates. While SeMet may be considered as therapeutic option in cancer treatment as modulation agent in anti-cancer therapy
    corecore