4 research outputs found

    Association of distinct fine specificities of anti-citrullinated peptide antibodies with elevated immune responses to Prevotella intermedia in a subgroup of patients with rheumatoid arthritis and periodontitis

    Get PDF
    Objective In addition to the long-established link with smoking, periodontitis (PD) is also a risk factor for rheumatoid arthritis (RA). To elucidate the mechanism by which PD could induce antibodies to citrullinated peptides (ACPA), we examine the antibody response to a novel citrullinated peptide from cytokeratin type I 13 identified in gingival crevicular fluid (GCF), and compare the response to 4 other citrullinated peptides in patients with RA, well-characterized for PD and smoking. Methods The citrullinomes of GCF and periodontal tissue from people with PD were mapped by mass spectrometry. Antibodies to citrullinated peptides from cytokeratin type I 13 (cCK13), tenascin-C (cTNC5), vimentin (cVIM), enolase (CEP-1) and fibrinogen β (cFIBβ) were examined by ELISA in patients with RA (n=287) and osteoarthritis (OA) (n=330), and cross-reactivity assessed by inhibition assays. Results A novel citrullinated peptide cCK13-1 (444TSNASGR-cit-TSDV-cit-RP458) identified in GCF, exhibited elevated antibody responses in RA patients (24%). Anti-cCK13-1 antibodies correlated with anti-cTNC5 antibodies, and absorption experiments confirmed this was not due to cross-reactivity. Only anti-cCK13-1 and anti-cTNC5 were associated with antibodies to the periodontal pathogen Prevotella intermedia (p=0.05 and p =0.001 respectively), but not with antibodies to Porphyromonas gingivalis arginine gingipains. Antibodies to CEP-1, cFIBβ and cVIM correlated with each other, and with smoking and shared epitope risk factors in RA. Conclusion This study identifies two groups of ACPA fine specificities associated with different RA risk factors; one predominantly linked to smoking and shared epitope, the other linking anti- cTNC5 and cCK13-1 to infection with the periodontal pathogen P. intermedia

    The role and uses of antibodies in COVID-19 infections: a living review

    Get PDF
    Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity

    T cell phenotypes in COVID-19 - a living review

    Get PDF
    COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients’ long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation
    corecore