4 research outputs found

    Actin-binding protein cortactin promotes pathogenesis of experimental autoimmune encephalomyelitis by supporting leukocyte infiltration into the central nervous system.

    No full text
    Leukocyte entry into the central nervous system (CNS) is essential for immune surveillance, but is also the basis for the development of pathologic inflammatory conditions within the CNS such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). The actin-binding protein, cortactin, in endothelial cells is an important player in regulating the interaction of immune cells with the vascular endothelium. Cortactin has been shown to control the integrity of the endothelial barrier and to support neutrophil transendothelial migration in vitro and in vivo in the skin. Here we employ cortactin gene inactivated (cortactin--/--) male and female mice to study the role of this protein in EAE. Inducing EAE by immunization with a myelin oligodendrocyte glycoprotein peptide (MOG35-55) revealed an ameliorated disease course in cortactin--/-- female mice compared to WT mice. However, proliferation capacity and expression of IL-17A and IFNγ by cortactin-deficient and wildtype splenocytes did not differ, suggesting that the lack of cortactin does not affect induction of the immune response. Rather, cortactin deficiency caused decreased vascular permeability and reduced leukocyte infiltration into the brains and spinal cords of EAE mice. Accordingly, cortactin gene-deficient mice had smaller numbers of proinflammatory cuffs, less extensive demyelination and reduced expression levels of proinflammatory cytokines within the neural tissue compared to wildtype littermates. Thus, cortactin contributes to the development of neural inflammation by supporting leukocyte transmigration through the blood-brain barrier and, therefore, represents a potential candidate for targeting CNS autoimmunity.SIGNIFICANCE STATEMENTMultiple sclerosis (MS) is an autoimmune neuroinflammatory disorder, based on the entry of inflammatory leukocytes into the central nervous system (CNS) where these cells cause demyelination and neurodegeneration. Here, we use a mouse model for MS, experimental autoimmune encephalomyelitis (EAE), and show that gene inactivation of cortactin, an actin binding protein that modulates actin dynamics and branching, protects against neuroinflammation in EAE. Leukocyte infiltration into the CNS was inhibited in cortactin deficient mice and lack of cortactin in cultured primary brain endothelial cells inhibited leukocyte transmigration. Expression levels of proinflammatory cytokines in the CNS and induction of vascular permeability were reduced. We conclude that cortactin represents a novel potential target for the treatment of MS

    Hematopoietic stem and progenitor cells use podosomes to transcellularly cross the bone marrow endothelium

    Get PDF
    Bone marrow endothelium plays an important role in the homing of hematopoietic stem and progenitor cells upon transplantation, but surprisingly little is known on how the bone marrow endothelial cells regulate local permeability and hematopoietic stem and progenitor cells transmigration. We show that temporal loss of vascular endothelial-cadherin function promotes vascular permeability in BM, even upon low-dose irradiation. Loss of vascular endothelial-cadherin function also enhances homing of transplanted hematopoietic stem and progenitor cells to the bone marrow of irradiated mice although engraftment is not increased. Intriguingly, stabilizing junctional vascular endothelial-cadherin in vivo reduced bone marrow permeability, but did not prevent hematopoietic stem and progenitor cells migration into the bone marrow, suggesting that hematopoietic stem and progenitor cells use the transcellular migration route to enter the bone marrow. Indeed, using an in vitro migration assay, we show that human hematopoietic stem and progenitor cells predominantly cross bone marrow endothelium in a transcellular manner in homeostasis by inducing podosome-like structures. Taken together, vascular endothelial-cadherin is crucial for BM vascular homeostasis but dispensable for the homing of hematopoietic stem and progenitor cells. These findings are important in the development of potential therapeutic targets to improve hematopoietic stem and progenitor cell homing strategies

    Endothelial-specific deficiency of Junctional Adhesion Molecule-C promotes vessel normalisation in proliferative retinopathy

    No full text
    In proliferative retinopathies, like proliferative diabetic retinopathy and retinopathy of prematurity (ROP), the hypoxia response is sustained by the failure of the retina to revascularise its ischaemic areas. Non-resolving retina ischaemia/hypoxia results in upregulation of pro-angiogenic factors and pathologic neovascularisation with ectopic, fragile neovessels. Promoting revascularisation of the retinal avascular area could interfere with this vicious cycle and lead to vessel normalisation. Here, we examined the function of endothelial junctional adhesion molecule-C (JAM-C) in the context of ROP. Endothelial-specific JAM-C-deficient (EC-JAM-C KO) mice and littermate JAM-C-proficient (EC-JAM-C WT) mice were subjected to the ROP model. An increase in total retinal vascularisation was found at p17 owing to endothelial JAM-C deficiency, which was the result of enhanced revascularisation and vessel normalisation, thereby leading to significantly reduced avascular area in EC-JAM-C KO mice. In contrast, pathologic neovessel formation was not affected by endothelial JAM-C deficiency. Consistent with improved vessel normalisation, tip cell formation at the interface between vascular and avascular area was higher in EC-JAM-C KO mice, as compared to their littermate controls. Consistently, JAM-C inactivation in endothelial cells resulted in increased spreading on fibronectin and enhanced sprouting in vitro in a manner dependent on β1-integrin and on the activation of the small GTPase RAP1. Together, endothelial deletion of JAM-C promoted endothelial cell sprouting, and consequently vessel normalisation and revascularisation of the hypoxic retina without altering pathologic neovascularisation. Thus, targeting endothelial JAM-C may provide a novel therapeutic strategy for promoting revascularisation and vessel normalisation in the treatment of proliferative retinopathies
    corecore