13 research outputs found

    In Vivo RNAi Screening Identifies MDA5 as a Significant Contributor to the Cellular Defense against Influenza A Virus

    Get PDF
    SummaryResponding to an influenza A virus (IAV) infection demands an effective intrinsic cellular defense strategy to slow replication. To identify contributing host factors to this defense, we exploited the host microRNA pathway to perform an in vivo RNAi screen. To this end, IAV, lacking a functional NS1 antagonist, was engineered to encode individual siRNAs against antiviral host genes in an effort to rescue attenuation. This screening platform resulted in the enrichment of strains targeting virus-activated transcription factors, specific antiviral effectors, and intracellular pattern recognition receptors (PRRs). Interestingly, in addition to RIG-I, the PRR for IAV, a virus with the capacity to silence MDA5 also emerged as a dominant strain in wild-type, but not in MDA5-deficient mice. Transcriptional profiling of infected knockout cells confirmed RIG-I to be the primary PRR for IAV but implicated MDA5 as a significant contributor to the cellular defense against influenza A virus

    Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry.

    No full text
    Hepatitis C virus (HCV) is a leading cause of cirrhosis and liver cancer worldwide. A better understanding of the viral life cycle, including the mechanisms of entry into host cells, is needed to identify novel therapeutic targets. Although HCV entry requires the CD81 co-receptor, and other host molecules have been implicated, at least one factor critical to this process remains unknown (reviewed in refs 1-3). Using an iterative expression cloning approach we identified claudin-1 (CLDN1), a tight junction component that is highly expressed in the liver, as essential for HCV entry. CLDN1 is required for HCV infection of human hepatoma cell lines and is the first factor to confer susceptibility to HCV when ectopically expressed in non-hepatic cells. Discrete residues within the first extracellular loop (EL1) of CLDN1, but not protein interaction motifs in intracellular domains, are critical for HCV entry. Moreover, antibodies directed against an epitope inserted in the CLDN1 EL1 block HCV infection. The kinetics of this inhibition indicate that CLDN1 acts late in the entry process, after virus binding and interaction with the HCV co-receptor CD81. With CLDN1 we have identified a novel key factor for HCV entry and a new target for antiviral drug development

    An In Vivo RNAi Screening Approach to Identify Host Determinants of Virus Replication

    Get PDF
    SummaryRNA interference (RNAi) has been extensively used to identify host factors affecting virus infection but requires exogenous delivery of short interfering RNAs (siRNAs), thus limiting the technique to nonphysiological infection models and a single defined cell type. We report an alternative screening approach using siRNA delivery via infection with a replication-competent RNA virus. In this system, natural selection, defined by siRNA production, permits the identification of host restriction factors through virus enrichment during a physiological infection. We validate this approach with a large-scale siRNA screen in the context of an in vivo alphavirus infection. Monitoring virus evolution across four independent screens identified two categories of enriched siRNAs: specific effectors of the direct antiviral arsenal and host factors that indirectly dampened the overall antiviral response. These results suggest that pathogenicity may be defined by the ability of the virus to antagonize broad cellular responses and specific antiviral factors

    The Appendix Orchestrates T-Cell Mediated Immunosurveillance in Colitis-Associated CancerSummary

    No full text
    Background & Aims: Although appendectomy may reduce colorectal inflammation in patients with ulcerative colitis (UC), this surgical procedure has been suggested to be associated with an increased risk of colitis-associated cancer (CAC). Our aim was to explore the mechanism underlying the appendectomy-associated increased risk of CAC. Methods: Five-week-old male BALB/c mice underwent appendectomy, appendicitis induction, or sham laparotomy. They were then exposed to azoxymethane/dextran sodium sulfate (AOM/DSS) to induce CAC. Mice were killed 12 weeks later, and colons were taken for pathological analysis and immunohistochemistry (CD3 and CD8 staining). Human colonic tumors from 21 patients with UC who underwent surgical resection for CAC were immunophenotyped and stratified according to appendectomy status. Results: Whereas appendectomy significantly reduced colitis severity and increased CAC number, appendicitis induction without appendectomy led to opposite results. Intratumor CD3+ and CD8+ T-cell densities were lower after appendectomy and higher after appendicitis induction compared with the sham laparotomy group. Blocking lymphocyte trafficking to the colon with the anti-α4β7 integrin antibody or a sphingosine-1-phosphate receptor agonist suppressed the inducing effect of the appendectomy on tumors’ number and on CD3+/CD8+ intratumoral density. CD8+ or CD3+ T cells isolated from inflammatory neo-appendix and intravenously injected into AOM/DSS-treated recipient mice increased CD3+/CD8+ T-cell tumor infiltration and decreased tumor number. In UC patients with a history of appendectomy, intratumor CD3+ and CD8+ T-cell densities were decreased compared with UC patients without history of appendectomy. Conclusions: In UC, appendectomy could suppress a major site of T-cell priming, resulting in a less efficient CAC immunosurveillance

    Viral fitness landscapes in diverse host species reveal multiple evolutionary lines for the NS1 gene of influenza a viruses

    No full text
    Influenza A viruses (IAVs) have a remarkable tropism in their ability to circulate in both mammalian and avian species. The IAV NS1 protein is a multifunctional virulence factor that inhibits the type I interferon host response through a myriad of mechanisms. How NS1 has evolved to enable this remarkable property across species and its specific impact in the overall replication, pathogenicity, and host preference remain unknown. Here we analyze the NS1 evolutionary landscape and host tropism using a barcoded library of recombinant IAVs. Results show a surprisingly great variety of NS1 phenotypes according to their ability to replicate in different hosts. The IAV NS1 genes appear to have taken diverse and random evolutionary pathways within their multiple phylogenetic lineages. In summary, the high evolutionary plasticity of this viral protein underscores the ability of IAVs to adapt to multiple hosts and aids in our understanding of its global prevalence.This research work was supported partially by CRIP (Center for Research on Influenza Pathogenesis), an NIH-NIAID-funded Center of Excellence for Influenza Research and Surveillance (CEIRS) (contract HHSN272201400008C), and by NIH-NIAID (grants U19AI117873 and U19AI135972). This research was also supported by the Bio & Medical Technology Development Program of the National Research Foundation (NRF), funded by the Ministry of Science and ICT of the Republic of Korea (NRF-2018M3A9H4056537 to M.-S.P., PI)

    A diverse range of gene products are effectors of the type I interferon antiviral response

    No full text
    The type I interferon response protects cells against invading viral pathogens. The cellular factors that mediate this defence are the products of interferon-stimulated genes (ISGs). Although hundreds of ISGs have been identified since their discovery more than 25 years ago, only a few have been characterized with respect to antiviral activity. For most ISG products, little is known about their antiviral potential, their target specificity and their mechanisms of action. Using an overexpression screening approach, here we show that different viruses are targeted by unique sets of ISGs. We find that each viral species is susceptible to multiple antiviral genes, which together encompass a range of inhibitory activities. To conduct the screen, more than 380 human ISGs were tested for their ability to inhibit the replication of several important human and animal viruses, including hepatitis C virus, yellow fever virus, West Nile virus, chikungunya virus, Venezuelan equine encephalitis virus and human immunodeficiency virus type-1. Broadly acting effectors included IRF1, C6orf150 (also known as MB21D1), HPSE, RIG-I (also known as DDX58), MDA5 (also known as IFIH1) and IFITM3, whereas more targeted antiviral specificity was observed with DDX60, IFI44L, IFI6, IFITM2, MAP3K14, MOV10, NAMPT (also known as PBEF1), OASL, RTP4, TREX1 and UNC84B (also known as SUN2). Combined expression of pairs of ISGs showed additive antiviral effects similar to those of moderate type I interferon doses. Mechanistic studies uncovered a common theme of translational inhibition for numerous effectors. Several ISGs, including ADAR, FAM46C, LY6E and MCOLN2, enhanced the replication of certain viruses, highlighting another layer of complexity in the highly pleiotropic type I interferon system
    corecore