54 research outputs found

    Evolutionary pathway for the 2017 emergence of a novel highly pathogenic avian influenza A(H7N9) virus among domestic poultry in Tennessee, United States

    Get PDF
    In March 2017, a novel highly pathogenic avian influenza A(H7N9) virus was detected at two commercial broiler breeder facilities in Tennessee, United States. In this study, a wild bird low pathogenic avian influenza A virus, A/blue-winged teal/Wyoming/AH0099021/2016(H7N9), was shown to be the probable precursor of the novel H7N9 virus; this low pathogenic virus has eight possible progenitor genes sharing\u3e 99% sequence identity with the novel H7N9 virus. Phylogeographic analyses showed that viral gene constellations that formed and circulated among dabbling ducks contributed to the emergence of the novel H7N9 virus. This is in contrast to the virus that caused the 2016 H7N8 outbreak, which had more genetic contributions from viruses circulating among diving ducks. Study findings support the need for ongoing wild bird surveillance to monitor circulating viruses and to understand possible evolutionary pathways of virus emergence in poultry

    Characterization of co-circulating swine influenza A viruses in North America and the identification of a novel H1 genetic clade with antigenic significance.

    Get PDF
    Multiple genetically and antigenically distinct hemagglutinin genes of the H1 and H3 influenza A virus (IAV) subtypes co-circulate in North American swine. This diversity has evolved by repeated transmission of IAVs from humans to swine and subsequent antigenic drift in swine. To understand the evolutionary dynamics of these diverse HA lineages in North American swine, we undertook a phylogenetic analysis of 1576 H1 and 607 H3 HA gene segments, as well as 834 N1 and 1293 N2 NA gene segments, and 2126 M gene segments. These data revealed yearly co-circulation of H1N1, H1N2, and H3N2 viruses, with three HA clades representing the majority of the HA sequences: of the H1 viruses, 42% were classified as H1δ1 and 40.6% were classified as H1γ; and of the H3 viruses 53% were classified as cluster IV-A H3N2. We detected a genetically distinct minor clade consisting of 37 H1 viruses isolated between 2003 and 2013, which we classified as H1γ-2. We estimated that this clade circulated in swine since approximately 1995, but it was not detected in swine until 2003. Though this clade only represents 1.07% of swine H1 sequences reported over the past 10 years, hemagglutination inhibition (HI) assays demonstrated that representatives of this clade of viruses are antigenically distinct, and, when measured using antigenic cartography, were as many as 7 antigenic units from other H1γ viruses. Therefore vaccines against the contemporary H1γ viruses are not likely to cross-protect against γ-2 viruses. The long-term circulation of these γ-2 viruses suggests that minor populations of viruses may be underreported in the national dataset given the long branch lengths and gaps in detections. The identification of these γ-2 viruses demonstrates the need for robust surveillance to capture the full diversity IAVs in swine in the USA and the importance of antigenic drift in the diversification and emergence of new antigenic variants in swine, which complicates vaccine design.Funding was provided by USDA-ARS and USDA355 APHIS-VS by the Supplemental Appropriations Act of 2009. NSL was funded by USDA-ARS SCA agreement number 58-3625-2-103F and the EC FP7 award number 259949. TKA was funded by USDA ARS SCA agreement number 58-3625-4-070.This is the accepted manuscript. The final version is available at http://www.sciencedirect.com/science/article/pii/S0168170215000799

    H5N1 highly pathogenic avian influenza clade 2.3.4.4b in wild and domestic birds: Introductions into the United States and reassortments, December 2021–April 2022

    Get PDF
    Highly pathogenic avian influenza viruses (HPAIVs) of the A/goose/Guangdong/1/1996 lineage H5 clade 2.3.4.4b continue to have a devastating effect on domestic and wild birds. Full genome sequence analyses using 1369 H5N1 HPAIVs detected in the United States (U.S.) in wild birds, commercial poultry, and backyard flocks from December 2021 to April 2022, showed three phylogenetically distinct H5N1 virus introductions in the U.S. by wild birds. Unreassorted Eurasian genotypes A1 and A2 entered the Northeast Atlantic states, whereas a genetically distinct A3 genotype was detected in Alaska. The A1 genotype spread westward via wild bird migration and reassorted with North American wild bird avian influenza viruses. Reassortments of up to five internal genes generated a total of 21 distinct clusters; of these, six genotypes represented 92% of the HPAIVs examined. By phylodynamic analyses, most detections in domestic birds were shown to be point-source transmissions from wild birds, with limited farm-to-farm spread

    Introduction of Avian metapneumovirus subtype A to the United States: molecular insights and implications

    Get PDF
    Avian metapneumovirus (aMPV) poses a significant threat to the poultry industry worldwide, primarily affecting turkeys and chickens. The recent detection of aMPV-A and -B subtypes in the United States marks a significant shift after a prolonged period free of aMPV following the eradication of the previously circulating subtype C. Hence, the demand for molecular diagnostic tests for aMPV has arisen due to their limited availability in the US market. In this study, we present the molecular characterization based on the complete genome sequence of aMPV subtype A, which was detected in the US for the first time. Four RT-qPCR positive samples were subjected to next-generation sequencing analysis, resulting in the assembly of one complete and one near-complete genome sequences. Phylogenetic analysis revealed that the isolated strains clustered within the aMPV-A subtype and were most closely related to recent Mexican strains. A detailed amino acid analysis identified unique mutations in the G gene of the US isolates compared to Mexican strains. Additionally, we compared the performance, cross-reactivity, and limit of detection of our revised aMPV subtype-specific RT-qPCR test with two commercial kits, demonstrating similar detection and subtyping capabilities. These findings highlight the importance of accurate diagnostic methods for disease management in the poultry industry, provide valuable insights into the epidemiology of aMPV, and underscore the need for continued vigilance and surveillance to mitigate its impact on poultry production

    Genetic evidence supports sporadic and independent introductions of subtype H5 low pathogenic avian influenza A viruses from wild birds to domestic poultry in North America

    Get PDF
    Wild-bird origin influenza A viruses (IAVs or avian influenza) have led to sporadic outbreaks among domestic poultry in the United States and Canada, resulting in economic losses through the implementation of costly containment practices and destruction of birds. We used evolutionary analyses of virus sequence data to determine that 78 H5 low-pathogenic avian influenza viruses (LPAIVs) isolated from domestic poultry in the United States and Canada during 2001 to 2017 resulted from 18 independent virus introductions from wild birds. Within the wild-bird reservoir, the hemagglutinin gene segments of H5 LPAIVs exist primarily as two cocirculating genetic sublineages, and our findings suggest that the H5 gene segments flow within each migratory bird flyway and among adjacent flyways, with limited exchange between the nonadjacent Atlantic and Pacific Flyways. Phylogeographic analyses provided evidence that IAVs from dabbling ducks and swans/geese contributed to the emergence of viruses among domestic poultry. H5 LPAIVs isolated from commercial farm poultry (i.e., turkey) that were descended from a single introduction typically remained a single genotype, whereas those from live-bird markets sometimes led to multiple genotypes, reflecting the potential for reassortment with other IAVs circulating within live-bird markets. H5 LPAIVs introduced from wild birds to domestic poultry represent economic threats to the U.S. poultry industry, and our data suggest that such introductions have been sporadic, controlled effectively through production monitoring and a stamping-out policy, and are, therefore, unlikely to result in sustained detections in commercial poultry operations. IMPORTANCE Integration of viral genome sequencing into influenza surveillance for wild birds and domestic poultry can elucidate evolutionary pathways of economically costly poultry pathogens. Evolutionary analyses of H5 LPAIVs detected in domestic poultry in the United States and Canada during 2001 to 2017 suggest that these viruses originated from repeated introductions of IAVs from wild birds, followed by various degrees of reassortment. Reassortment was observed where biosecurity was low and where opportunities for more than one virus to circulate existed (e.g., congregations of birds from different premises, such as live-bird markets). None of the H5 lineages identified were maintained for the long term in domestic poultry, suggesting that management strategies have been effective in minimizing the impacts of virus introductions on U.S. poultry production

    Low-Pathogenic Influenza A Viruses in North American Diving Ducks Contribute to the Emergence of a Novel Highly Pathogenic Influenza A(H7N8) Virus

    Get PDF
    Introductions of low-pathogenic avian influenza (LPAI) viruses of subtypes H5 and H7 into poultry from wild birds have the potential to mutate to highly pathogenic avian influenza (HPAI) viruses, but such viruses’ origins are often unclear. In January 2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To determine the virus’s origin, we sequenced the genomes of 441 wild-bird origin influenza A viruses (IAVs) from North America and subjected them to evolutionary analyses. The results showed that the H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it evolved high pathogenicity. Preceding the outbreak, an isolate with six gene segments (PB2, PB1, PA, HA, NA, and NS) sharing \u3e99% sequence identity with those of H7N8 turkey isolates was recovered from a diving duck sampled in Kentucky, USA. H4N8 IAVs from other diving ducks possessed five H7N8-like gene segments (PB2, PB1, NA, MP, and NS; \u3e98% sequence identity). Our findings suggest that viral gene constellations circulating among diving ducks can contribute to the emergence of IAVs that affect poultry. Therefore, diving ducks may serve an important and understudied role in the maintenance, diversification, and transmission of IAVs in the wild-bird reservoir

    Ten-year mortality, disease progression, and treatment-related side effects in men with localised prostate cancer from the ProtecT randomised controlled trial according to treatment received

    Get PDF
    Background The ProtecT trial reported intention-to-treat analysis of men with localised prostate cancer randomly allocated to active monitoring (AM), radical prostatectomy, and external beam radiotherapy. Objective To report outcomes according to treatment received in men in randomised and treatment choice cohorts. Design, setting, and participants This study focuses on secondary care. Men with clinically localised prostate cancer at one of nine UK centres were invited to participate in the treatment trial comparing AM, radical prostatectomy, and radiotherapy. Intervention Two cohorts included 1643 men who agreed to be randomised and 997 who declined randomisation and chose treatment. Outcome measurements and statistical analysis Analysis was carried out to assess mortality, metastasis and progression and health-related quality of life impacts on urinary, bowel, and sexual function using patient-reported outcome measures. Analysis was based on comparisons between groups defined by treatment received for both randomised and treatment choice cohorts in turn, with pooled estimates of intervention effect obtained using meta-analysis. Differences were estimated with adjustment for known prognostic factors using propensity scores. Results and limitations According to treatment received, more men receiving AM died of PCa (AM 1.85%, surgery 0.67%, radiotherapy 0.73%), whilst this difference remained consistent with chance in the randomised cohort (p = 0.08); stronger evidence was found in the exploratory analyses (randomised plus choice cohort) when AM was compared with the combined radical treatment group (p = 0.003). There was also strong evidence that metastasis (AM 5.6%, surgery 2.4%, radiotherapy 2.7%) and disease progression (AM 20.35%, surgery 5.87%, radiotherapy 6.62%) were more common in the AM group. Compared with AM, there were higher risks of sexual dysfunction (95% at 6 mo) and urinary incontinence (55% at 6 mo) after surgery, and of sexual dysfunction (88% at 6 mo) and bowel dysfunction (5% at 6 mo) after radiotherapy. The key limitations are the potential for bias when comparing groups defined by treatment received and changes in the protocol for AM during the lengthy follow-up required in trials of screen-detected PCa. Conclusions Analyses according to treatment received showed increased rates of disease-related events and lower rates of patient-reported harms in men managed by AM compared with men managed by radical treatment, and stronger evidence of greater PCa mortality in the AM group. Patient summary More than 95 out of every 100 men with low or intermediate risk localised prostate cancer do not die of prostate cancer within 10 yr, irrespective of whether treatment is by means of monitoring, surgery, or radiotherapy. Side effects on sexual and bladder function are better after active monitoring, but the risks of spreading of prostate cancer are more common
    • …
    corecore