20 research outputs found

    A Novel Combination of Serum Markers in a Multivariate Model to Help Triage Patients Into “Low-” and “High-Risk” Categories for Prostate Cancer

    Get PDF
    BACKGROUND: Almost 50,000 men in the United Kingdom (UK) are diagnosed each year with prostate cancer (PCa). Secondary referrals for investigations rely on serum prostate-specific antigen (PSA) levels and digital rectal examination. However, both tests lack sensitivity and specificity, resulting in unnecessary referrals to secondary care for costly and invasive biopsies. MATERIALS AND METHODS: Serum samples and clinical information were collected from N = 125 age-matched patients (n = 61 non-PCa and n = 64 PCa) and analyzed using Biochip Array Technology on high-sensitivity cytokine array I (IL-2, IL-4, IL-6, IL-8, IL-10, IL-1α, IL-1β, TNFα, MCP-1, INFγ, EGF, and VEGF), cerebral array II (CRP, D-dimer, neuron-specific enolase, and sTNFR1), and tumor PSA oncology array (fPSA, tPSA, and CEA). RESULTS: The data showed that 11/19 (68.8%) markers were significantly different between the non-PCa and the PCa patients. A combination of EGF, log(10) IL-8, log(10) MCP-1, and log(10) tPSA significantly improved the predictive potential of tPSA alone to identify patients with PCa (DeLong, p < 0.001). This marker combination had an increased area under the receiver operator characteristic (0.860 vs. 0.700), sensitivity (78.7 vs. 68.9%), specificity (76.5 vs. 67.2%), PPV (76.2 vs. 66.7%), and NPV (79.0 vs. 69.4%) compared with tPSA. CONCLUSIONS: The novel combination of serum markers identified in this study could be employed to help triage patients into “low-” and “high-risk” categories, allowing general practitioners to improve the management of patients in primary care settings and potentially reducing the number of referrals for unnecessary, invasive, and costly treatments

    Post-traumatic stress disorder: A biopsychosocial case-control study investigating peripheral blood protein biomarkers

    Get PDF
    Experiencing traumatic events is unfortunately commonplace and, in some cases, may lead to the onset of debilitating mental health disorders, such as post-traumatic stress disorder (PTSD). Current diagnostic criteria for PTSD results in high depression and anxiety comorbidity. Better understanding of biological mechanisms and pathways underlying PTSD could aid in more accurate case identification and stratification of treatments. Recent meta-analysis has identified chronic PTSD to be associated with increased expression of pro-inflammatory cytokines and alterations in neuronal structures which contribute to an overall reduction in brain volume. Despite this, there are currently no biological markers in clinical use to identify PTSD or monitor treatment. This case-control study (n = 40) aimed to identify differences in peripheral blood biomarkers, and biomarker combinations, able to distinguish PTSD participants from controls, and examine in a biopsychosocial framework. The levels of 5/37 biomarkers investigated were significantly altered in the serum of PTSD participants: HDL and LDL cholesterol, tPA, IL-8 and EGF. Biomarkers could be used in combination with psychological criteria, in a biopsychosocial model, to support clinical management decisions and ensure appropriate individual treatment pathways

    Non-alcoholic fatty liver disease—A pilot study investigating early inflammatory and fibrotic biomarkers of NAFLD with alcoholic liver disease

    Get PDF
    Introduction: Non-alcoholic fatty liver disease (NAFLD) is a condition where excess fat accumulates in the liver (hepatic steatosis) and there is no history of alcohol abuse or other secondary causes of chronic liver disease. NAFLD is a very common disorder, occurring in 25% of the global population. NAFLD is now the most common chronic liver disorder in Western countries. Liver biopsy is the gold standard for NAFLD diagnosis and staging; however, this is invasive, costly and not without risk. Biomarkers that could diagnose and stage disease would reduce the need for biopsy and allow stratification of patients at risk of progression to non-alcoholic steatohepatitis (NASH).Methods: One hundred and thirty-five patients were involved in the study [N = 135: n = 34 controls; n = 26 simple steatosis; n = 61 NAFLD/NASH, and n = 14 alcoholic liver disease (ALD)]. Clinically diagnosed (ICD-10) patient serum samples were obtained from Discovery Life Sciences (US) along with clinical history. Samples were run in duplicate using high-sensitivity cytokine array I, immunoassays and ELISAs. In total, n = 20 individual biomarkers were investigated in this pilot study.Results: Thirteen/20 (65%) biomarkers were identified as significantly different between groups; IFNγ, EGF, IL-1β, IL-6, IL-8, IL-10, TNFα, FABP-1, PIIINP, ST2/IL-33R, albumin, AST and ALT. Five/20 (25%) biomarker candidates were identified for further investigation; namely, three biomarkers of inflammation, IL-6, IL-8, and TNFα, and two biomarkers of fibrosis, PIIINP and ST2/IL-33R.Discussion: Single biomarkers are unlikely to be diagnostic or predictive at staging NAFLD due to the complex heterogeneity of the disease. However, biomarker combinations may help stratify risk and stage disease where patients are averse to biopsy. Further studies comparing the 5 biomarkers identified in this study with current diagnostic tests and fibrotic deposition in liver tissue are warranted

    Analysis of reactive aldehydes in urine and plasma of type-2 diabetes mellitus patients through liquid chromatography-mass spectrometry: Reactive aldehydes as potential markers of diabetic nephropathy

    Get PDF
    IntroductionDiabetes is a major public health issue that is approaching epidemic proportions globally. Diabetes mortality is increasing in all ethnic groups, irrespective of socio-economic class. Obesity is often seen as the main contributor to an increasing prevalence of diabetes. Oxidative stress has been shown to trigger obesity by stimulating the deposition of white adipose tissue. In this study, we measured reactive aldehydes by liquid chromatography-mass spectrometry (LC-MS), in the urine and plasma of type-2 diabetic mellitus (T2DM) patients, as potential surrogates of oxidative stress. Our hypothesis was that reactive aldehydes play a significant role in the pathophysiology of diabetes, and these reactive species, may present potential drug targets for patient treatment.Materials and methodsStudy participants [N = 86; control n = 26; T2DM n = 32, and diabetic nephropathy (DN) n = 28] were recruited between 2019 and 2020. Urine and blood samples were collected from all participants, including a detailed clinical history, to include patient behaviours, medications, and co-morbidities. Reactive aldehyde concentrations in urine and plasma were measured using pre-column derivatisation and LC-MS, for control, T2DM and DN patients.ResultsReactive aldehydes were measured in the urine and plasma of control subjects and patients with T2DM and DN. In all cases, the reactive aldehydes under investigation; 4-HNE, 4-ONE, 4-HHE, pentanal, methylglyoxal, and glyoxal, were significantly elevated in the urine and serum of the patients with T2DM and DN, compared to controls (p &lt; 0.001) (Kruskal–Wallis). Urine and serum reactive aldehydes were significantly correlated (≥0.7) (p &lt; 0.001) (Spearman rho). The concentrations of the reactive aldehydes were significantly higher in plasma samples, when compared to urine, suggesting that plasma is the optimal matrix for screening T2DM and DN patients for oxidative stress.ConclusionReactive aldehydes are elevated in the urine and plasma of T2DM and DN patients. Reactive aldehydes have been implicated in the pathobiology of T2DM. Therefore, if reactive aldehydes are surrogates of oxidative stress, these reactive aldehyde species could be therapeutic targets for potential drug development

    Cross-cutting principles for planetary health education

    Get PDF
    Since the 2015 launch of the Rockefeller Foundation Lancet Commission on planetary health,1 an enormous groundswell of interest in planetary health education has emerged across many disciplines, institutions, and geographical regions. Advancing these global efforts in planetary health education will equip the next generation of scholars to address crucial questions in this emerging field and support the development of a community of practice. To provide a foundation for the growing interest and efforts in this field, the Planetary Health Alliance has facilitated the first attempt to create a set of principles for planetary health education that intersect education at all levels, across all scales, and in all regions of the world—ie, a set of cross-cutting principles

    Mathematical models of cell cycle regulation

    No full text
    research project focuses on the analysis and modelling of protein kinase and phosphatase systems involved in the cell cycle
    corecore