3 research outputs found

    A newly isolated cotton-infecting Polerovirus with cryptic pathogenicity encodes a weak suppressor of RNA silencing

    Get PDF
    Cotton is a multipurpose crop grown globally, including the United States. Cotton leafroll dwarf virus (CLRDV), a phloem-limited virus (Solemoviridae) transmitted by aphids, causes significant economic losses to cotton cultivation. CLRDV strains (CLRDV-typical and atypical) that were previously prevalent in other countries cause severe symptoms leading to high yield loss. Recently, a new isolate of CLRDV (CLRDV-AL) has been characterized from infected cotton plants in Alabama that are often asymptomatic and difficult to detect, implying a low titer and pathogenicity within the host. Different pathogenicity among certain strains within the same species often correlates with both environmental and molecular factors. Thus, better management and control of the vector-borne disease can be achieved by elucidating host-pathogen interaction, such as host immune response and pathogen counter-response. In this study, we demonstrate the ability of CLRDV-AL to suppress a major host defense response known as RNA silencing and compare the potency of silencing suppression to other strains of the same virus. Also, we discuss the difference in pathogenicity among them by evaluating the observations based on the amino acid variation within the functional domain. Our study provides and suggests a future direction for specifying the strategy to mitigate potential cotton disease severity

    Functional Characterization of RNA Silencing Suppressor Encoded by Cotton Leafroll Dwarf Virus

    No full text
    The P0 proteins encoded by Cotton leafroll dwarf virus (CLRDV) serve as viral suppressors of RNA silencing (VSR). CLRDV P0 proteins share a VSR-associated F-box-like motif. This study investigated the role of specific amino acid (aa) residues within the F-box-like motif, elucidating their implications for VSR potency, pathogenicity, and intracellular localization. Analysis of various single aa substitution mutants within the F-box-like motif to understand their effect on P0 proteins’ VSR potency revealed that specific mutations significantly affect P0’s ability to suppress RNA silencing, emphasizing the crucial role of the F-box-like motif. Subcellular localization examinations indicated that the P0 proteins associate with the nucleus and endoplasmic reticulum, which may be linked to their VSR function. Also, the induction of hypersensitive response (HR)-like symptoms and the accumulation of reactive oxygen species by P0 proteins was observed, suggesting their role as pathogenicity factors. These results indicated that specific mutations significantly affect the functions of multifaceted P0 proteins, highlighting the F-box-like motif’s crucial role. Our study highlights the importance of further molecular investigations to elucidate how different CLRDV strains manifest various disease symptoms and severity. This is crucial considering the global economic importance of cotton and the potential emergence of more threatening CLRDV isolates

    Hybrids of RNA viruses and viroid-like elements replicate in fungi

    Get PDF
    Abstract Earth’s life may have originated as self-replicating RNA, and it has been argued that RNA viruses and viroid-like elements are remnants of such pre-cellular RNA world. RNA viruses are defined by linear RNA genomes encoding an RNA-dependent RNA polymerase (RdRp), whereas viroid-like elements consist of small, single-stranded, circular RNA genomes that, in some cases, encode paired self-cleaving ribozymes. Here we show that the number of candidate viroid-like elements occurring in geographically and ecologically diverse niches is much higher than previously thought. We report that, amongst these circular genomes, fungal ambiviruses are viroid-like elements that undergo rolling circle replication and encode their own viral RdRp. Thus, ambiviruses are distinct infectious RNAs showing hybrid features of viroid-like RNAs and viruses. We also detected similar circular RNAs, containing active ribozymes and encoding RdRps, related to mitochondrial-like fungal viruses, highlighting fungi as an evolutionary hub for RNA viruses and viroid-like elements. Our findings point to a deep co-evolutionary history between RNA viruses and subviral elements and offer new perspectives in the origin and evolution of primordial infectious agents, and RNA life
    corecore