24 research outputs found

    Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation

    Get PDF
    The planar cell polarity (PCP) pathway is conserved throughout evolution, but it mediates distinct developmental processes. In Drosophila, members of the PCP pathway localize in a polarized fashion to specify the cellular polarity within the plane of the epithelium, perpendicular to the apicobasal axis of the cell. In Xenopus and zebrafish, several homologs of the components of the fly PCP pathway control convergent extension. We have shown previously that mammalian PCP homologs regulate both cell polarity and polarized extension in the cochlea in the mouse. Here we show, using mice with null mutations in two mammalian Dishevelled homologs, Dvl1 and Dvl2, that during neurulation a homologous mammalian PCP pathway regulates concomitant lengthening and narrowing of the neural plate, a morphogenetic process defined as convergent extension. Dvl2 genetically interacts with Loop-tail, a point mutation in the mammalian PCP gene Vangl2, during neurulation. By generating Dvl2 BAC (bacterial artificial chromosome) transgenes and introducing different domain deletions and a point mutation identical to the dsh1 allele in fly, we further demonstrated a high degree of conservation between Dvl function in mammalian convergent extension and the PCP pathway in fly. In the neuroepithelium of neurulating embryos, Dvl2 shows DEP domain-dependent membrane localization, a pre-requisite for its involvement in convergent extension. Intriguing, the Loop-tail mutation that disrupts both convergent extension in the neuroepithelium and PCP in the cochlea does not disrupt Dvl2 membrane distribution in the neuroepithelium, in contrast to its drastic effect on Dvl2 localization in the cochlea. These results are discussed in light of recent models on PCP and convergent extension

    Roles of the Rlim-Rex1 axis during X chromosome inactivation in mice

    Get PDF
    In female mice, the gene dosage from X chromosomes is adjusted by a process called X chromosome inactivation (XCI) that occurs in two steps. An imprinted form of XCI (iXCI) that silences the paternally inherited X chromosome (Xp) is initiated at the 2-to 4-cell stages. As extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI require the lncRNA Xist, which is expressed from the X to be inactivated. The X-linked E3 ubiquitin ligase Rlim (Rnf12) in conjunction with its target protein Rex1 (Zfp42), a critical repressor of Xist, have emerged as major regulators of iXCI. However, their roles in rXCI remain controversial. Investigating early mouse development, we show that the Rlim-Rex1 axis is active in pre-implantation embryos. Upon implantation Rex1 levels are downregulated independently of Rlim specifically in epiblast cells. These results provide a conceptual framework of how the functional dynamics between Rlim and Rex1 ensures regulation of iXCI but not rXCI in female mice.</p

    Deficient spermiogenesis in mice lacking Rlim

    Get PDF
    The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis

    Inorganic Phosphate in the Pathogenesis of Pregnancy-Related Complications

    No full text
    Inorganic phosphate (Pi) is an essential nutrient that fulfills critical roles in human health. It enables skeletal ossification, supports cellular structure and organelle function, and serves key biochemical roles in energetics and molecular signaling. Pi homeostasis is modulated through diet, intestinal uptake, renal reabsorption, and mobilization of stores in bone and extracellular compartments. Disrupted Pi homeostasis is associated with phosphate wasting, mineral and bone disorders, and vascular calcification. Mechanisms of Pi homeostasis in pregnancy remain incompletely understood. The study presented herein examined biological fluid Pi characteristics over the course of gestation. Correlations with gestation age, pregnancy number, preterm birth, preeclampsia, diabetes mellitus, and placental calcification were evaluated during the last trimester. The results support that maternal urinary Pi levels increased during the third trimester of pregnancy. Reduced levels were observed with previous pregnancy. Amniotic fluid Pi levels decreased with gestation while low second trimester levels associated with preterm birth. No significant difference in urinary Pi levels was observed between preeclampsia and controls (8.50 Ā± 2.74 vs. 11.52 Ā± 2.90 mmol/L). Moreover, increased maternal urinary Pi was associated with preexisting diabetes mellitus in preeclampsia. Potential confounding factors in this study are maternal age at delivery and body mass index (BMI)ā€”information which we do not have access to for this cohort. In conclusion, Pi levels provide clinical information regarding the pathogenesis of pregnancy-related complications, supporting that phosphate should be examined more closely and in larger populations

    Visceral endoderm expression of Yin-Yang1 (YY1) is required for VEGFA maintenance and yolk sac development.

    Get PDF
    Mouse embryos lacking the polycomb group gene member Yin-Yang1 (YY1) die during the peri-implantation stage. To assess the post-gastrulation role of YY1, a conditional knock-out (cKO) strategy was used to delete YY1 from the visceral endoderm of the yolk sac and the definitive endoderm of the embryo. cKO embryos display profound yolk sac defects at 9.5 days post coitum (dpc), including disrupted angiogenesis in mesoderm derivatives and altered epithelial characteristics in the visceral endoderm. Significant changes in both cell death and proliferation were confined to the YY1-expressing yolk sac mesoderm indicating that loss of YY1 in the visceral endoderm causes defects in the adjacent yolk sac mesoderm. Production of Vascular Endothelial Growth Factor A (VEGFA) by the visceral endoderm is essential for normal growth and development of the yolk sac vasculature. Reduced levels of VEGFA are observed in the cKO yolk sac, suggesting a cause for the angiogenesis defects. Ex vivo culture with exogenous VEGF not only rescued angiogenesis and apoptosis in the cKO yolk sac mesoderm, but also restored the epithelial defects observed in the cKO visceral endoderm. Intriguingly, blocking the activity of the mesoderm-localized VEGF receptor, FLK1, recapitulates both the mesoderm and visceral endoderm defects observed in the cKO yolk sac. Taken together, these results demonstrate that YY1 is responsible for maintaining VEGF in the developing visceral endoderm and that a VEGF-responsive paracrine signal, originating in the yolk sac mesoderm, is required to promote normal visceral endoderm development

    Human SMAD4 Genomic Variants Identified in Individuals with Heritable and Early-Onset Thoracic Aortic Disease

    No full text
    Thoracic aortic aneurysms (TAAs) that progress to acute thoracic aortic dissections (TADs) are life-threatening vascular events that have been associated with altered transforming growth factor (TGF) Ī² signaling. In addition to TAA, multiple genetic vascular disorders, including hereditary hemorrhagic telangiectasia (HHT), involve altered TGFĪ² signaling and vascular malformations. Due to the importance of TGFĪ², genomic variant databases have been curated for activin receptor-like kinase 1 (ALK1) and endoglin (ENG). This case report details seven variants in SMAD4 that are associated with either heritable or early-onset aortic dissections and compares them to pathogenic exon variants in gnomAD v2.1.1. The TAA and TAD variants were identified through whole exome sequencing of 346 families with unrelated heritable thoracic aortic disease (HTAD) and 355 individuals with early-onset (age ā‰¤ 56 years old) thoracic aortic dissection (ESTAD). An allele frequency filter of less than 0.05% was applied in the Genome Aggregation Database (gnomAD exome v2.1.1) with a combined annotation-dependent depletion score (CADD) greater than 20. These seven variants also have a higher REVEL score (&gt;0.2), indicating pathogenic potential. Further in vivo and in vitro analysis is needed to evaluate how these variants affect SMAD4 mRNA stability and protein activity in association with thoracic aortic disease

    RLIM is dispensable for X-chromosome inactivation in the mouse embryonic epiblast

    No full text
    In female mice, two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X chromosome. Later, around implantation, epiblast cells of the inner cell mass that give rise to the embryo reactivate the paternal X chromosome and undergo a random form of XCI (rXCI). Xist, a long non-coding RNA crucial for both forms of XCI, is activated by the ubiquitin ligase RLIM (also known as Rnf12). Although RLIM is required for triggering iXCI in mice, its importance for rXCI has been controversial. Here we show that RLIM levels are downregulated in embryonic cells undergoing rXCI. Using mouse genetics we demonstrate that female cells lacking RLIM from pre-implantation stages onwards show hallmarks of XCI, including Xist clouds and H3K27me3 foci, and have full embryogenic potential. These results provide evidence that RLIM is dispensable for rXCI, indicating that in mice an RLIM-independent mechanism activates Xist in the embryo proper

    <i>FoxA3-Cre</i> mediated <i>Yy1</i> cKO deletion results in prominent yolk sac defects at 9.5 <i>dpc</i>.

    No full text
    <p>A-L) Bright field images of WT (Aā€“F) and cKO (Gā€“L) embryos (EM) alone or embryos within their yolk sacs (YS) at the indicated stages. A, G) 8.5 <i>dpc</i> mutant embryos (inset in G) are sometimes slightly delayed compared with WT (inset in A) but display no noticeable yolk sac defects. Bā€“C, Hā€“I) 9.0 <i>dpc</i> mutants display relatively normal yolk sac blood vessel development. Dā€“E, Jā€“K) 9.5 <i>dpc</i> mutant yolk sacs have dilated vessels (asterisk in J) and poor vessel organization (compare D to J). cKO embryos (K) are smaller than WT embryos (E) from the same litter. F, L) While prominent large blood vessels are easily detected in 10.5 <i>dpc</i> WT yolk sacs (F), the yolk sacs of mutants are uniformly pale (L). Mā€“P) A comparison of WT and mutant H&E stained yolk sac sections demonstrates that while no differences are found at 8.5 <i>dpc</i> (M, O), the 9.5 <i>dpc</i> cKO yolk sac (P) has fewer and larger vessels compared with WT (N). Q) Investigation of the same sized area at 9.5 <i>dpc</i> revealed significantly fewer vessels in mutant compared with WT yolk sacs (***ā€Š=ā€Šp<0.001; error barā€Š=ā€Šstandard error). R) A size distribution chart at 9.5 <i>dpc</i> reveals that mutants contain fewer of the small vessels (<100 Āµm) and more of the larger vessels (>100 Āµm) compared with WT yolk sacs.</p
    corecore