10 research outputs found

    Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization

    Full text link
    NOTE: Updated version 1.1 available at http://hdl.handle.net/2027.42/162573 Climate change is one of the largest challenges of our time. One of the major causes of anthropogenic climate change, carbon dioxide, also leads to ocean acidification. Left unaddressed, these two challenges will alter ecosystems and fundamentally change life, as we know it. Under the auspices of the UN Framework Convention on Climate Change and through the Paris Agreement, there is a commitment to keep global temperature increase to well below two degrees Celsius. This will require a variety of strategies including increased renewable power generation and broad scale electrification, increased energy efficiency, and carbon-negative technologies. We believe that Life Cycle Assessment (LCA) is necessary to prove that a technology could contribute to the mitigation of environmental impacts and that Techno-Economic Assessment (TEA) will show how the technology could be competitively delivered in the market. Together the guidelines for LCA and TEA that are presented in this document are a valuable toolkit for promoting carbon capture and utilization (CCU) technology development.Development of standardized CO2 Life Cycle and Techno-economic Assessment Guidelines was commissioned by CO2 Sciences, Inc., with the support of 3M, EIT Climate-KIC, CO2 Value Europe, Emissions Reduction Alberta, Grantham Foundation for the Protection of the Environment, R. K. Mellon Foundation, Cynthia and George Mitchell Foundation, National Institute of Clean and Low Carbon Energy, Praxair, Inc., XPRIZE and generous individuals who are committed to action to address climate change.https://deepblue.lib.umich.edu/bitstream/2027.42/145436/3/Global_CO2_Initiative_TEA_LCA_Guidelines-2018.pdf-

    Methanol Worked Examples for the TEA and LCA Guidelines for CO2 Utilization

    Full text link
    This document contains worked examples of how to apply the accompanying “Guideline for Techno-Economic Assessment of CO2 Utilization” and “Guideline for Life Cycle Assessment of CO2 Utilization”. The Guidelines can be downloaded via http://hdl.handle.net/2027.42/145436. These worked examples are not intended to be a definitive TEA or LCA report on the process described, but are provided as supporting material to show how the TEA and LCA methodologies described in the guidelines can be specifically applied to tackle the issues surrounding CO2 utilization. This document describes techno-economic assessment and life cycle assessment for methanol production. As methanol production via hydrogenation and PEM electrolysis of water to produce hydrogen are both at high technology readiness levels (TRL7+); a CO2 capture technology currently at a lower TRL (membrane separation at TRL3 or 4) was selected to demonstrate the differences that can be observed in the interpretation phase when working on TEA and LCA studies of processes with lower TRLs. It is acknowledged that there are many unknown variables with membrane capture, and it is not within the remit of this work to draw conclusions on their application. However, it is known that organizations wish to conduct TEA and LCA studies across a range of TRLs and therefore we hope to demonstrate here how this could affect the results. This document is one of several application examples that accompany the parent document “Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization”.Development of standardized CO2 Life Cycle and Techno-economic Assessment Guidelines was commissioned by CO2 Sciences, Inc., with the support of 3M, EIT Climate-KIC, CO2 Value Europe, Emissions Reduction Alberta, Grantham Foundation for the Protection of the Environment, R. K. Mellon Foundation, Cynthia and George Mitchell Foundation, National Institute of Clean and Low Carbon Energy, Praxair, Inc., XPRIZE and generous individuals who are committed to action to address climate change.https://deepblue.lib.umich.edu/bitstream/2027.42/145723/5/Global CO2 Initiative Complete Methanol Study 2018.pd

    Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO2 Utilization (Version 1.1)

    Get PDF
    Climate change is one of the greatest challenges of our time. Under the auspices of the UN Framework Convention on Climate Change and through the Paris Agreement, there is a commitment to keep global temperature rise this century to well below two degrees Celsius compared with pre-industrial levels. This will require a variety of strategies, including increased renewable power generation, broad-scale electrification, greater energy efficiency, and carbon-negative technologies. With increasing support worldwide, innovations in carbon capture and utilization (CCU) technologies are now widely acknowledged to contribute to achieving climate mitigation targets while creating economic opportunities. To assess the environmental impacts and commercial competitiveness of these innovations, Life Cycle Assessment (LCA) and Techno-Economic Assessment (TEA) are needed. Against this background, guidelines (Version 1.0) on LCA and TEA were published in 2018 as a valuable toolkit for evaluating CCU technology development. Ever since, an open community of practitioners, commissioners, and users of such assessments has been involved in gathering feedback on the initial document. That feedback has informed the improvements incorporated in this updated Version 1.1 of the Guidelines. The revisions take into account recent publications in this evolving field of research; correct minor inconsistencies and errors; and provide better alignment of TEA with LCA. Compared to Version 1.0, some sections have been restructured to be more reader-friendly, and the specific guideline recommendations are renamed ‘provisions.’ Based on the feedback, these provisions have been revised and expanded to be more instructive.Global CO2 Initiative at the University of MichiganEIT Climate-KIChttp://deepblue.lib.umich.edu/bitstream/2027.42/162573/5/TEA&LCA Guidelines for CO2 Utilization v1.1.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/162573/7/ESI reference scenario data_Corrected.xlsxSEL

    Patterns of Alcohol Consumption Among Individuals With Alcohol Use Disorder During the COVID-19 Pandemic and Lockdowns in Germany

    Get PDF
    Importance Alcohol consumption (AC) leads to death and disability worldwide. Ongoing discussions on potential negative effects of the COVID-19 pandemic on AC need to be informed by real-world evidence. Objective To examine whether lockdown measures are associated with AC and consumption-related temporal and psychological within-person mechanisms. Design, Setting, and Participants This quantitative, intensive, longitudinal cohort study recruited 1743 participants from 3 sites from February 20, 2020, to February 28, 2021. Data were provided before and within the second lockdown of the COVID-19 pandemic in Germany: before lockdown (October 2 to November 1, 2020); light lockdown (November 2 to December 15, 2020); and hard lockdown (December 16, 2020, to February 28, 2021). Main Outcomes and Measures Daily ratings of AC (main outcome) captured during 3 lockdown phases (main variable) and temporal (weekends and holidays) and psychological (social isolation and drinking intention) correlates. Results Of the 1743 screened participants, 189 (119 [63.0%] male; median [IQR] age, 37 [27.5-52.0] years) with at least 2 alcohol use disorder (AUD) criteria according to the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) yet without the need for medically supervised alcohol withdrawal were included. These individuals provided 14 694 smartphone ratings from October 2020 through February 2021. Multilevel modeling revealed significantly higher AC (grams of alcohol per day) on weekend days vs weekdays (β = 11.39; 95% CI, 10.00-12.77; P < .001). Alcohol consumption was above the overall average on Christmas (β = 26.82; 95% CI, 21.87-31.77; P < .001) and New Year’s Eve (β = 66.88; 95% CI, 59.22-74.54; P < .001). During the hard lockdown, perceived social isolation was significantly higher (β = 0.12; 95% CI, 0.06-0.15; P < .001), but AC was significantly lower (β = −5.45; 95% CI, −8.00 to −2.90; P = .001). Independent of lockdown, intention to drink less alcohol was associated with lower AC (β = −11.10; 95% CI, −13.63 to −8.58; P < .001). Notably, differences in AC between weekend and weekdays decreased both during the hard lockdown (β = −6.14; 95% CI, −9.96 to −2.31; P = .002) and in participants with severe AUD (β = −6.26; 95% CI, −10.18 to −2.34; P = .002). Conclusions and Relevance This 5-month cohort study found no immediate negative associations of lockdown measures with overall AC. Rather, weekend-weekday and holiday AC patterns exceeded lockdown effects. Differences in AC between weekend days and weekdays evinced that weekend drinking cycles decreased as a function of AUD severity and lockdown measures, indicating a potential mechanism of losing and regaining control. This finding suggests that temporal patterns and drinking intention constitute promising targets for prevention and intervention, even in high-risk individuals

    High performance, but low cost and environmental impact? Integrated techno-economic and life cycle assessment of polyoxazolidinone as a novel high-performance polymer

    No full text
    High-performance thermoplastic polymers (HPTs) are increasingly used in advanced applications such as aviation or electronics due to their superior chemical and mechanical properties at elevated temperatures. However, producing HPTs is resource- and energy-intensive, resulting in high environmental impacts and production costs. Polyoxazolidinone (POX) has been proposed as a novel HPT with potential environmental and economic benefits compared to reference HPTs by increased process efficiency and readily available inputs. By a combined techno-economic and life-cycle assessment, we show that POX reduces environmental impacts while being cost-competitive compared to reference HPTs polyetherimide, polyethersulfone, and polysulfone. For fossil-based production, POX reduces GHG emissions by 34-45%. Bio-based production combined with renewable energy further reduces GHG emissions of HPTs by 55-78% but leads to environmental trade-offs. The economic evaluation of POX suggests a 26-35% price reduction compared to reference HPTs, and potential markups over 100% in the HPT market. Our results demonstrate how enhanced process efficiency of novel products such as POX can contribute to the decarbonizing polymer industry.ISSN:1463-9262ISSN:1463-927

    Using Carbon Pricing Revenues to Finance Infrastructure Access

    No full text
    Introducing a price on greenhouse gas emissions would not only contribute to reducing the risk of dangerous anthropogenic climate change, but would also generate substantial public revenues. Some of these revenues could be used to cover investment needs for infrastructure providing access to water, sanitation, electricity, telecommunications and transport. In this way, emission pricing could promote sustainable socio-economic development by safeguarding the stability of natural systems which constitute the material basis of economies while at the same time providing public goods that are essential for human well- being. An analysis of several climate scenarios with different stabilization targets and technological assumptions reveals that emission pricing has a substantial potential to close existing access gaps

    Techno-economic assessment and life cycle assessment for CO<sub>2</sub> utilisation

    No full text
    This chapter is mainly based on the Techno-Economic Assessment and Life Cycle Assessment Guidelines for CO2Utilisation[1] written by the authors. This chapter provides a brief introduction to techno-economic assessment (TEA) and life cycle assessment (LCA) for CO2utilisation, and all topics are explained in further detail in the Guidelines mentioned above

    Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO2 Utilization (Version 2.0)

    No full text
    Climate change is one of the greatest challenges of our time. Under the auspices of the UN Framework Convention on Climate Change and through the Paris Agreement, there is a commitment to keep global temperature rise this century to well below two degrees Celsius compared with pre-industrial levels. This will require a variety of strategies, including increased renewable power generation, broad-scale electrification, greater energy efficiency, and carbon-negative technologies. With increasing support worldwide, innovations in carbon capture and utilization (CCU) technologies are now widely acknowledged to contribute to achieving climate mitigation targets while creating economic opportunities. To assess the environmental impacts and commercial competitiveness of these innovations, consistent and transparent Life Cycle Assessment (LCA) and Techno-Economic Assessment (TEA) are needed. Against this background, guidelines (Version 1.0) on LCA and TEA were published in 2018 and updated (Version 1.1) in 2020 as a valuable toolkit for evaluating and guiding CCU technology development. Ever since, an open community of practitioners, commissioners, and users of such assessments has been involved in gathering feedback on the document. That feedback has informed the improvements and the expansion incorporated in Version 2.0 of the Guidelines. This revised and expanded version 2.0 of the Guidelines has again been developed by a team of researchers at RWTH Aachen, TU Berlin, the Institute for Advanced Sustainability Studies Potsdam, the University of Sheffield, and the University of Michigan. Several workshops, the work of the International CCU Assessment Harmonization Group, and feedback from practitioners and users of LCA and TEA studies, have contributed to this updated version. Version 2.0 includes new chapters on integrated assessments that combine LCA and TEA, how to assess early-stage technologies, and how to include social impact in LCA and TEA.Global CO2 InitiativeEIT Climate-KICPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/171800/1/TEA & LCA Guidelines for CCU v2.pdfDescription of TEA & LCA Guidelines for CCU v2.pdf : Report documentSEL
    corecore