59 research outputs found

    Synthesis of Highly Cis, Syndiotactic Polymers via Ring-Opening Metathesis Polymerization Using Ruthenium Metathesis Catalysts

    Get PDF
    The first example of ruthenium-mediated ring-opening metathesis polymerization generating highly cis, highly tactic polymers is reported. While the cis content varied from 62 to >95% depending on the monomer structure, many of the polymers synthesized displayed high tacticity (>95%). Polymerization of an enantiomerically pure 2,3-dicarboalkoxynorbornadiene revealed a syndiotactic microstructure

    Stereoselective Access to Z and E Macrocycles by Ruthenium-Catalyzed Z-Selective Ring-Closing Metathesis and Ethenolysis

    Get PDF
    The first report of Z-selective macrocyclizations using a ruthenium-based metathesis catalyst is described. The selectivity for Z macrocycles is consistently high for a diverse set of substrates with a variety of functional groups and ring sizes. The same catalyst was also employed for the Z-selective ethenolysis of a mixture of E and Z macrocycles, providing the pure E isomer. Notably, an ethylene pressure of only 1 atm was required. These methodologies were successfully applied to the construction of several olfactory macrocycles as well as the formal total synthesis of the cytotoxic alkaloid motuporamine C

    Concise Syntheses of Insect Pheromones Using Z-Selective Cross Metathesis

    Get PDF
    The use of insect sex pheromones to limit specifically targeted pest populations has gained increasing popularity as a viable, safe, and environmentally friendly alternative to insecticides. While broad-spectrum insecticides are toxic compounds that have been shown to adversely affect human health,[1] extensive studies have shown that insect pheromones are nontoxic and safe for human consumption at the levels used in pest control practices.[2] Female sex pheromones are mainly employed in pest control in a process termed mating disruption. This involves dispersing pheromones over a large area, overloading the sensory organs of male insects and preventing them from locating and mating with females who are releasing a much smaller amount of the same pheromone blends; this strategy has proven to reduce specific insect populations dramatically.[3] To date, the United States Environmental Protection Agency (EPA) has approved approximately twenty lepidopteran female sex pheromones as active ingredients for pest control.[2

    Ru-based Z-selective metathesis catalysts with modified cyclometalated carbene ligands

    Get PDF
    A series of cyclometalated Z-selective ruthenium olefin metathesis catalysts with alterations to the N-heterocyclic carbene (NHC) ligand were prepared. X-Ray crystal structures of several new catalysts were obtained, elucidating the structural features of this class of cyclometalated complexes. The metathesis activity of each stable complex was evaluated, and one catalyst, bearing geminal dimethyl backbone substitution, was found to be comparable to our best Z-selective metathesis catalyst to date

    Highly Active Ruthenium Metathesis Catalysts Exhibiting Unprecedented Activity and Z‑Selectivity

    Get PDF
    A novel chelated ruthenium-based metathesis catalyst bearing an N-2,6-diisopropylphenyl group is reported and displays near-perfect selectivity for the Z-olefin (>95%), as well as unparalleled TONs of up to 7400, in a variety of homodimerization and industrially relevant metathesis reactions. This derivative and other new catalytically active species were synthesized using an improved method employing sodium carboxylates to induce the salt metathesis and C–H activation of these chelated complexes. All of these new ruthenium-based catalysts are highly Z-selective in the homodimerization of terminal olefins

    Cyclic Alkyl Amino Carbene (CAAC) Ruthenium Complexes as Remarkably Active Catalysts for Ethenolysis

    Get PDF
    An expanded family of ruthenium-based metathesis catalysts bearing cyclic alkyl amino carbene (CAAC) ligands was prepared. These catalysts exhibited exceptional activity in the ethenolysis of the seed-oil derivative methyl oleate. In many cases, catalyst turnover numbers (TONs) of more than 100 000 were achieved, at a catalyst loading of only 3 ppm. Remarkably, the most active catalyst system was able to achieve a TON of 340 000, at a catalyst loading of only 1 ppm. This is the first time a series of metathesis catalysts has exhibited such high performance in cross-metathesis reactions employing ethylene gas, with activities sufficient to render ethenolysis applicable to the industrial-scale production of linear α-olefins (LAOs) and other terminal-olefin products

    Staphylococcus aureus pathogenicity in cystic fibrosis patients-results from an observational prospective multicenter study concerning virulence genes, phylogeny, and gene plasticity

    Get PDF
    Staphylococcus aureus and cystic fibrosis (CF) are closely interlinked. To date, however, the impact of S. aureus culture in CF airways on lung function and disease progression has only been elucidated to a limited degree. This analysis aims to identify bacterial factors associated to clinical deterioration. Data were collected during an observational prospective multi-center study following 195 patients from 17 centers. The average follow-up time was 80 weeks. S. aureus isolates (n = 3180) were scanned for the presence of 25 virulence genes and agr-types using single and multiplex PCR. The presence of specific virulence genes was not associated to clinical deterioration. For the agr-types 1 and 4, however, a link to the subjects' clinical status became evident. Furthermore, a significant longitudinal decrease in the virulence gene quantity was observed. Analyses of the plasticity of the virulence genes revealed significantly increased plasticity rates in the presence of environmental stress. The results suggest that the phylogenetic background defines S. aureus pathogenicity rather than specific virulence genes. The longitudinal loss of virulence genes most likely reflects the adaptation process directed towards a persistent and colonizing rather than infecting lifestyle

    Synphilin-1 Enhances α-Synuclein Aggregation in Yeast and Contributes to Cellular Stress and Cell Death in a Sir2-Dependent Manner

    Get PDF
    © 2010 Büttner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Parkinson’s disease is characterized by the presence of cytoplasmic inclusions, known as Lewy bodies, containing both aggregated α-synuclein and its interaction partner, synphilin-1. While synphilin-1 is known to accelerate inclusion formation by α-synuclein in mammalian cells, its effect on cytotoxicity remains elusive. Methodology/Principal Findings: We expressed wild-type synphilin-1 or its R621C mutant either alone or in combination with α-synuclein in the yeast Saccharomyces cerevisiae and monitored the intracellular localization and inclusion formation of the proteins as well as the repercussions on growth, oxidative stress and cell death. We found that wild-type and mutant synphilin-1 formed inclusions and accelerated inclusion formation by α-synuclein in yeast cells, the latter being correlated to enhanced phosphorylation of serine-129. Synphilin-1 inclusions co-localized with lipid droplets and endomembranes. Consistently, we found that wild-type and mutant synphilin-1 interacts with detergent-resistant membrane domains, known as lipid rafts. The expression of synphilin-1 did not incite a marked growth defect in exponential cultures, which is likely due to the formation of aggresomes and the retrograde transport of inclusions from the daughter cells back to the mother cells. However, when the cultures approached stationary phase and during subsequent ageing of the yeast cells, both wild-type and mutant synphilin-1 reduced survival and triggered apoptotic and necrotic cell death, albeit to a different extent. Most interestingly, synphilin-1 did not trigger cytotoxicity in ageing cells lacking the sirtuin Sir2. This indicates that the expression of synphilin-1 in wild-type cells causes the deregulation of Sir2-dependent processes, such as the maintenance of the autophagic flux in response to nutrient starvation. Conclusions/Significance: Our findings demonstrate that wild-type and mutant synphilin-1 are lipid raft interacting proteins that form inclusions and accelerate inclusion formation of α-synuclein when expressed in yeast. Synphilin-1 thereby induces cytotoxicity, an effect most pronounced for the wild-type protein and mediated via Sir2-dependent processes.This work was supported by grants from IWT-Vlaanderen (SBO NEURO-TARGET), the K.U.Leuven Research Fund (K.U.Leuven BOF-IOF) and K.U.Leuven R&D to JW, a Tournesol grant from Egide (Partenariat Hubert Curien) in France in collaboration with the Flemish Ministry of Education and the Fund of Scientific Research of Flanders (FWO) in Belgium to JW, MCG and LB, a shared PhD fellowship of the EU-Marie Curie PhD Graduate School NEURAD to JW, MCG and LB, grants of the Austrian Science Fund FWF (Austria) to FM and DR (S-9304-B05), to FM and SB (LIPOTOX), and to SB (T-414-B09; Hertha-Firnberg Fellowship) and an EMBO Installation Grant, a Marie Curie IRG, and a grant of the Fundação para a Ciência e Tecnologia (PTDC/SAU-NEU/105215/2008) to TFO. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    • …
    corecore