76 research outputs found

    Patterning of dielectric nanoparticles using dielectrophoretic forces generated by ferroelectric polydomain films

    Full text link
    A theoretical study of a dielectrophoretic force, i.e. the force acting on an electrically neutral particle in the inhomogeneous electric field, which is produced by a ferroelectric domain pattern, is presented. It has been shown by several researchers that artificially prepared domain patterns with given geometry in ferroelectric single crystals represent an easy and flexible method for patterning dielectric nanoobjects using dielectrophoretic forces. The source of the dielectrophoretic force is a strong and highly inhomogeneous (stray) electric field, which exists in the vicinity of the ferroelectric domain walls at the surface of the ferroelectric film. We analyzed dielectrophoretic forces in the model of a ferroelectric film of a given thickness with a lamellar 180{}^\circ domain pattern. The analytical formula for the spatial distribution of the stray field in the ionic liquid above the top surface of the film is calculated including the effect of free charge screening. The spatial distribution of the dielectrophoretic force produced by the domain pattern is presented. The numerical simulations indicate that the intersection of the ferroelectric domain wall and the surface of the ferroelectric film represents a trap for dielectric nanoparticles in the case of so called positive dielectrophoresis. The effects of electrical neutrality of dielectric nanoparticles, free charge screening due to the ionic nature of the liquid, domain pattern geometry, and the Brownian motion on the mechanism of nanoparticle deposition and the stability of the deposited pattern are discussed.Comment: Accepted in the Journal of Applied Physics, 10 pages, 5 figure

    On complete integrability of the Mikhailov-Novikov-Wang system

    Full text link
    We obtain compatible Hamiltonian and symplectic structure for a new two-component fifth-order integrable system recently found by Mikhailov, Novikov and Wang (arXiv:0712.1972), and show that this system possesses a hereditary recursion operator and infinitely many commuting symmetries and conservation laws, as well as infinitely many compatible Hamiltonian and symplectic structures, and is therefore completely integrable. The system in question admits a reduction to the Kaup--Kupershmidt equation.Comment: 5 pages, no figure

    Scalar second order evolution equations possessing an irreducible sl2_2-valued zero curvature representation

    Full text link
    We find all scalar second order evolution equations possessing an sl2_2-valued zero curvature representation that is not reducible to a proper subalgebra of sl2_2. None of these zero-curvature representations admits a parameter.Comment: 10 pages, requires nath.st

    Classification of integrable Weingarten surfaces possessing an sl(2)-valued zero curvature representation

    Full text link
    In this paper we classify Weingarten surfaces integrable in the sense of soliton theory. The criterion is that the associated Gauss equation possesses an sl(2)-valued zero curvature representation with a nonremovable parameter. Under certain restrictions on the jet order, the answer is given by a third order ordinary differential equation to govern the functional dependence of the principal curvatures. Employing the scaling and translation (offsetting) symmetry, we give a general solution of the governing equation in terms of elliptic integrals. We show that the instances when the elliptic integrals degenerate to elementary functions were known to nineteenth century geometers. Finally, we characterize the associated normal congruences

    Recursion operator for stationary Nizhnik--Veselov--Novikov equation

    Full text link
    We present a new general construction of recursion operator from zero curvature representation. Using it, we find a recursion operator for the stationary Nizhnik--Veselov--Novikov equation and present a few low order symmetries generated with the help of this operator.Comment: 6 pages, LaTeX 2

    Zero curvature representation for a new fifth-order integrable system

    Full text link
    In this brief note we present a zero-curvature representation for one of the new integrable system found by Mikhailov, Novikov and Wang in nlin.SI/0601046.Comment: 2 pages, LaTeX 2e, no figure

    On the Invariant Theory of Weingarten Surfaces in Euclidean Space

    Full text link
    We prove that any strongly regular Weingarten surface in Euclidean space carries locally geometric principal parameters. The basic theorem states that any strongly regular Weingarten surface is determined up to a motion by its structural functions and the normal curvature function satisfying a geometric differential equation. We apply these results to the special Weingarten surfaces: minimal surfaces, surfaces of constant mean curvature and surfaces of constant Gauss curvature.Comment: 16 page

    Why nonlocal recursion operators produce local symmetries: new results and applications

    Full text link
    It is well known that integrable hierarchies in (1+1) dimensions are local while the recursion operators that generate them usually contain nonlocal terms. We resolve this apparent discrepancy by providing simple and universal sufficient conditions for a (nonlocal) recursion operator in (1+1) dimensions to generate a hierarchy of local symmetries. These conditions are satisfied by virtually all known today recursion operators and are much easier to verify than those found in earlier work. We also give explicit formulas for the nonlocal parts of higher recursion operators, Poisson and symplectic structures of integrable systems in (1+1) dimensions. Using these two results we prove, under some natural assumptions, the Maltsev--Novikov conjecture stating that higher Hamiltonian, symplectic and recursion operators of integrable systems in (1+1) dimensions are weakly nonlocal, i.e., the coefficients of these operators are local and these operators contain at most one integration operator in each term.Comment: 10 pages, LaTeX 2e, final versio

    On the relation between standard and μ\mu-symmetries for PDEs

    Full text link
    We give a geometrical interpretation of the notion of μ\mu-prolongations of vector fields and of the related concept of μ\mu-symmetry for partial differential equations (extending to PDEs the notion of λ\lambda-symmetry for ODEs). We give in particular a result concerning the relationship between μ\mu-symmetries and standard exact symmetries. The notion is also extended to the case of conditional and partial symmetries, and we analyze the relation between local μ\mu-symmetries and nonlocal standard symmetries.Comment: 25 pages, no figures, latex. to be published in J. Phys.
    corecore