We obtain compatible Hamiltonian and symplectic structure for a new
two-component fifth-order integrable system recently found by Mikhailov,
Novikov and Wang (arXiv:0712.1972), and show that this system possesses a
hereditary recursion operator and infinitely many commuting symmetries and
conservation laws, as well as infinitely many compatible Hamiltonian and
symplectic structures, and is therefore completely integrable. The system in
question admits a reduction to the Kaup--Kupershmidt equation.Comment: 5 pages, no figure