2 research outputs found

    COSY Slow Orbit Feedback System

    No full text
    The Cooler Synchrotron (COSY) at Forschungszentrum Jülich is currently carrying out the preparation for a direct measurement of the electric Dipole Moment (EDM) of the deuteron using an RF Wien filter*,**. In a magnetic storage ring with the spin vector aligned along the direction of motion, the EDM manifests in a buildup of the vertical spin component. Besides this signal, radial magnetic fields due to a distortion of the vertical closed orbit can produce a similar signal. This signal is a systematic limit of the proposed measurement procedure. Based on simulation studies***, a vertical closed orbit distortion with a RMS smaller than 0.1 mm is required to achieve a sensitivity of 10⁻¹⁹ e.cm or better. In order to accomplish this challenging goal, a slow orbit feedback system was proposed and recently commissioned at COSY. The design and commissioning results will be presented, and the future plan will also be discussed

    Coupling CRISPR interference with FACS enrichment: New approach in glycoengineering of CHO cell lines for therapeutic glycoprotein production.

    No full text
    Difficulties in obtaining and maintaining the desired level of the critical quality attributes (CQAs) of therapeutic proteins as well as the pace of the development are major challenges of current biopharmaceutical development. Therapeutic proteins, both innovative and biosimilars, are mostly glycosylated. Glycans directly influence the stability, potency, plasma half-life, immunogenicity, and effector functions of the therapeutic. Hence, glycosylation is widely recognized as a process-dependent CQA of therapeutic glycoproteins. Due to the typically high heterogeneity of glycoforms attached to the proteins, control of glycosylation represents one of the most challenging aspects of biopharmaceutical development. Here, we explored a new glycoengineering approach in therapeutic glycoproteins development, which enabled us to achieve the targeted glycoprofile of the Fc-fusion protein in a fast manner. Coupling CRISPRi technology with lectin-FACS sorting enabled downregulation of the endogenous gene involved in fucosylation and further enrichment of CHO cells producing Fc-fusion proteins with reduced fucosylation levels. Enrichment of cells with targeted glycoprofile can lead to time-optimized clone screening and speed up cell line development. Moreover, the presented approach allows isolation of clones with varying levels of fucosylation, which makes it applicable to a broad range of glycoproteins differing in target fucosylation level
    corecore