30 research outputs found

    HIP1–ALK, a Novel Fusion Protein Identified in Lung Adenocarcinoma

    Get PDF
    Introduction:The most common mechanism underlying overexpression and activation of anaplastic lymphoma kinase (ALK) in non–small-cell lung carcinoma could be attributed to the formation of a fusion protein. To date, five fusion partners of ALK have been reported, namely, echinoderm microtubule associated protein like 4, tropomyosin-related kinase-fused gene, kinesin family member 5B, kinesin light chain 1, and protein tyrosine phosphatase, nonreceptor type 3.Methods:In this article, we report a novel fusion gene huntingtin interacting protein 1 (HIP1)–ALK, which is conjoined between the huntingtin-interacting protein 1 gene HIP1 and ALK. Reverse-transcriptase polymerase chain reaction and immunohistochemical analysis were used to detect this fusion gene’s transcript and protein expression, respectively. We had amplified the full-length cDNA sequence of this novel fusion gene by using 5′-rapid amplification of cDNA ends. The causative genomic translocation t(2;7)(p23;q11.23) for generating this novel fusion gene was verified by using genomic sequencing.Results:The examined adenocarcinoma showed predominant acinar pattern, and ALK immunostaining was localized to the cytoplasm, with intense staining in the submembrane region. In break-apart, fluorescence in situ hybridization analysis for ALK, split of the 5′ and 3′ probe signals, and isolated 3′ signals were observed. Reverse-transcriptase polymerase chain reaction revealed that the tumor harbored a novel fusion transcript in which exon 21 of HIP1 was fused to exon 20 of ALK in-frame.Conclusion:The novel fusion gene and its protein HIP1–ALK harboring epsin N-terminal homology, coiled-coil, juxtamembrane, and kinase domains, which could play a role in carcinogenesis, could become diagnostic and therapeutic target of the lung adenocarcinoma and deserve a further study in the future

    Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR

    Get PDF
    The aim of this study was to determine the distribution of known oncogenic driver mutations in female never-smoker Asian patients with lung adenocarcinoma. We analyzed 214 mutations across 26 lung cancer-associated genes and three fusion genes using the MassARRAY® LungCarta Panel and the ALK, ROS1, and RET fusion assays in 198 consecutively resected lung adenocarcinomas from never-smoker females at a single institution. EGFR mutation, which was the most frequent driver gene mutation, was detected in 124 (63%) cases. Mutation of ALK, KRAS, PIK3CA, ERBB2, BRAF, ROS1, and RET genesoccurred in 7%, 4%, 2.5%, 1.5%, 1%, 1%, and 1% of cases, respectively. Thus, 79% of lung adenocarcinomas from never-smoker females harbored well-known oncogenic mutations. Mucinous adenocarcinomas tended to have a lower frequency of known driver gene mutations than other histologic subtypes. EGFR mutation was associated with older age and a predominantly acinar pattern, while ALK rearrangement was associated with younger age and a predominantly solid pattern. Lung cancer in never-smoker Asian females is a distinct entity, with the majority of these cancers developing from oncogenic mutations

    TNER: a novel background error suppression method for mutation detection in circulating tumor DNA

    No full text
    Abstract Background Ultra-deep next-generation sequencing of circulating tumor DNA (ctDNA) holds great promise as a tool for the early detection of cancer and for monitoring disease progression and therapeutic responses. However, the low abundance of ctDNA in the bloodstream coupled with technical errors introduced during library construction and sequencing complicates mutation detection. Results To achieve high accuracy of variant calling via better distinguishing low-frequency ctDNA mutations from background errors, we introduce TNER (Tri-Nucleotide Error Reducer), a novel background error suppression method that provides a robust estimation of background noise to reduce sequencing errors. The results on both simulated data and real data from healthy subjects demonstrate that the proposed algorithm consistently outperforms a current, state-of-the-art, position-specific error polishing model, particularly when the sample size of healthy subjects is small. Conclusions TNER significantly enhances the specificity of downstream ctDNA mutation detection without sacrificing sensitivity. The tool is publicly available at https://github.com/ctDNA/TNER

    Genetic association of the CCR5 region with lipid levels in at-risk cardiovascular patients

    No full text
    There is mounting evidence to suggest that chemokine receptor 5 (CCR5) plays an important role in the development and progression of atherosclerosis. A naturally occurring variant of the CCR5 gene CCR532, exists at allele frequencies of typically 10% in European populations and results in a nonfunctional CCR5 receptor. The CCR5Delta32 deletion and 26 other variants within the chemokine receptor 2-CCR5-chemokine receptor-like protein 2 (CCRL2) gene cluster spanning 59 kilobases of chromosome 3 were genotyped in 5748 subjects from the Treating to New Targets atorvastatin trial to determine whether genetic associations could be identified with circulating lipid values and cardiovascular disease. Our results demonstrate an association between the CCR5Delta32 deletion and increased plasma high-density lipoprotein cholesterol and decreased plasma triglycerides, both of which are beneficial from a cardiovascular perspective. Three single-nucleotide polymorphisms (rs1154428, rs6808835, and rs6791599) in CCRL2 in linkage disequilibrium (r(2)> or =0.65) with CCR5Delta32 and located up to 45 kilobases distal to it were associated with high-density lipoprotein cholesterol. The high-density lipoprotein cholesterol and triglycerides findings were replicated in an additional set of >6000 individuals from the Incremental Decrease in Endpoints through Aggressive Lipid Lowering atorvastatin trial. Our study provides evidence that a locus within the region of the genome encompassing the CCR5-CCRL2 region is associated with lipid levels and suggests that chemokine activity influences lipid levels in populations with preexisting cardiovascular disease. CLINICAL TRIAL REGISTRATION- clinicaltrials.gov. Identifier: TNT, NCT00327691; IDEAL, NCT0015983

    SEC31A-ALK Fusion Gene in Lung Adenocarcinoma

    No full text
    Anaplastic lymphoma kinase (ALK) fusion is a common mechanism underlying pathogenesis of non-small cell lung carcinoma (NSCLC) where these rearrangements represent important diagnostic and therapeutic targets. In this study, we found a new ALK fusion gene, SEC31A-ALK, in lung carcinoma from a 53-year-old Korean man. The conjoined region in the fusion transcript was generated by the fusion of SEC31A exon 21 and ALK exon 20 by genomic rearrangement, which contributed to generation of an intact, in-frame open reading frame. SEC31A-ALK encodes a predicted fusion protein of 1438 amino acids comprising the WD40 domain of SEC31A at the N-terminus and ALK kinase domain at the C-terminus. FISH studies suggested that SEC31A-ALK was generated by an unbalanced genomic rearrangement associated with loss of the 3'end of SEC31A. This is the first report of SEC31A-ALK fusion transcript in clinical NSCLC, which could be a novel diagnostic and therapeutic target for patients with NSCLC.status: publishe
    corecore