8 research outputs found

    Synthesis of Catalytic Precursors Based on Mixed Ni-Al Oxides by Supercritical Antisolvent Co-Precipitation

    No full text
    Mixed Ni-Al oxide catalytic precursors with different elemental ratios (20, 50, and 80 wt.% Ni0) were synthesized using green supercritical antisolvent co-precipitation (SAS). The obtained oxide precursors and metal catalysts were characterized in detail by X-ray diffraction (XRD) analysis, atomic pair distribution function (PDF) analysis, CO adsorption, and high-resolution transmission electron microscopy (HRTEM). It was found that the composition and structure of the Ni-Al precursors are related to the Ni content. The mixed Ni1−xAlxO oxide with NiO-based crystal structure was formed in the Ni-enriched sample, whereas the highly dispersed NiAl2O4 spinel was observed in the Al-enriched sample. The obtained metal catalysts were tested in the process of anisole H2-free hydrogenation. 2-PrOH was used as a hydrogen donor. The catalyst with 50 wt.% Ni0 demonstrated the highest activity in the hydrogenation process

    Synthesis of Y3Al5O12:Ce Powders for X-ray Luminescent Diamond Composites

    No full text
    A concentration series of Y3Al5O12:Ce solid solutions were prepared, and the composition demonstrating the highest X-ray luminescence intensity of cerium was identified. Based on the best composition, a series of luminescent diamond–Y3Al5O12:Ce composite films were synthesized using microwave plasma-assisted chemical vapor deposition (CVD) in methane–hydrogen gas mixtures. Variations in the amounts of the embedded Y3Al5O12:Ce powders allowed for the fine-tuning of the luminescence intensity of the composite films

    Synthesis of Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce Powders for X-ray Luminescent Diamond Composites

    No full text
    A concentration series of Y3Al5O12:Ce solid solutions were prepared, and the composition demonstrating the highest X-ray luminescence intensity of cerium was identified. Based on the best composition, a series of luminescent diamond–Y3Al5O12:Ce composite films were synthesized using microwave plasma-assisted chemical vapor deposition (CVD) in methane–hydrogen gas mixtures. Variations in the amounts of the embedded Y3Al5O12:Ce powders allowed for the fine-tuning of the luminescence intensity of the composite films

    Use of Polyguanidine-Derivatives-Based Biocides for Microbial Growth Inhibition and for the Development of A Novel Polyethylene-Based Composite Material Resistant to the Formation of Multispecies Microbial Biofilms

    Full text link
    This study aimed to investigate the dependence of the biocidal activity of polyguanidine (co)polymers on their structure during the formation of biofilms by active PE-degrading cultures of model microorganisms. The Bc-2 copolymer of methacryloyl guanidine hydrochloride (MGHC) and diallyldimethylammonium chloride (DADMAC), which suppressed both the formation of biofilms and the growth of planktonic cultures, exhibited the highest activity. When PE was exposed in tropical soil, the composition of the microbial community on the PE surface differed significantly from that of the community in the surrounding soil. In particular, the proportion of Actinobacteria increased from 7% to 29%, while the proportion of Bacteroidetes decreased from 38% to 8%. Keywords: biofilms, polyhexamethylene guanidine salts, dynamics of biofilm formation, antibiofilm effect, composite material

    Table_1_Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin.DOCX

    No full text
    The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10–9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.</p

    Table_2_Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin.docx

    No full text
    The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10–9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.</p

    Table_3_Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin.docx

    No full text
    The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10–9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.</p

    Data_Sheet_1_Epinephrine extensively changes the biofilm matrix composition in Micrococcus luteus C01 isolated from human skin.DOCX

    No full text
    The importance of the impact of human hormones on commensal microbiota and microbial biofilms is established in lots of studies. In the present investigation, we continued and extended the research of epinephrine effects on the skin commensal Micrococcus luteus C01 and its biofilms, and also the matrix changes during the biofilm growth. Epinephrine in concentration 4.9 × 10–9 M which is close to normal blood plasma level increased the amount of polysaccharides and extracellular DNA in the matrix, changed extensively its protein, lipid and polysaccharide composition. The Ef-Tu factor was one of the most abundant proteins in the matrix and its amount increased in the presence of the hormone. One of the glucose-mannose polysaccharide was absent in the matrix in presence of epinephrine after 24 h of incubation. The matrix phospholipids were also eradicated by the addition of the hormone. Hence, epinephrine has a great impact on the M. luteus biofilms and their matrix composition, and this fact opens wide perspectives for the future research.</p
    corecore