18 research outputs found

    Low-Energy Proton Testing Methodology

    Get PDF
    Use of low-energy protons and high-energy light ions is becoming necessary to investigate current-generation SEU thresholds. Systematic errors can dominate measurements made with low-energy protons. Range and energy straggling contribute to systematic error. Low-energy proton testing is not a step-and-repeat process. Low-energy protons and high-energy light ions can be used to measure SEU cross section of single sensitive features; important for simulation

    Proton-Induced Upsets in SLC and MLC NAND Flash Memories

    No full text
    We investigate proton-induced upsets in state-of-the-art NAND Flash memories, down to the 25-nm node. The most striking result is the opposite behavior of Multi-Level Cell (MLC) and Single-Level Cell (SLC) devices, in terms of floating gate error cross section as a function of proton energy. In fact, the cross section increases with proton energy in SLC whereas it decreases in MLC. The reason for this behavior is studied through comparison of heavy-ion data and device simulations. The main factors that determine proton energy dependence are discussed, such as the energy dependence of nuclear cross section between protons and chip materials, the LET, energy, and angular distributions of the generated secondaries, but also the heavy-ion and total dose response of the studied devices. Proton irradiation effects in the control circuitry of NAND Flash memories are shown as well
    corecore