3 research outputs found

    Before-During-After Biomonitoring Assessment for a Pipeline Construction in a Coastal Lagoon in the Northern Adriatic Sea (Italy)

    Get PDF
    During 2006–2008, a pipeline was buried in Vallona lagoon in the Northern Adriatic Sea (Italy). A Before-During-After environmental monitoring programme was scheduled to monitor possible alterations. Bioaccumulation of metal(loid)s, BTs (butyltins) and HMW-PAHs (High Molecular Weight Polycyclic Aromatic Hydrocarbons), and biological responses (Condition index, air Survival –LT50, Acetylcholinesterase, Micronuclei –MN, acyl-CoA oxidase, catalase, malondialdehyde –MDA, and the total oxyradical scavenging capacity-TOSCA) were investigated in Manila clams (Ruditapes philippinarum) from November 2005 to June 2015. In opera (IO) results showed higher levels of HMW-PAHs (73 ± 13 ng/g), BTs (90 ± 38 ng Sn/g) and increasing levels of Pb (6.7 ± 0.7 mg/kg) and Zn (73.6 ± 6.08 mg/kg) probably linked to works. Other contaminant alterations, especially metal(loid)s, before (AO) and after (PO) the burial, were attributed to a general condition of the area and mostly unrelated to works. In addition, LT50, MN and TOSCA showed alterations, probably due to hotspots occurring in IO. TOSCA and MDA increases, right after the burial, were considered delayed responses of IO, whilst other biological responses detected later were connected to the general condition of the area. Comparisons between results of Principal Component Analyses (PCAs) highlighted partial overlapping of AO and IO, whilst PO differed only for contaminants. Visual correlations between PCAs highlighted the biomarkers’ latter response

    Report of the Working Group of Biological Effects

    Get PDF
    The Working Group on Biological Effects of Contaminants (WGBEC) investigates the biological effects of contaminants in the marine environment. The group provides research and increases the understanding of contaminant interactions and effects, including the development of inte-grated biological effects monitoring strategies, which are used to support international research and monitoring. The WGBEC has contributed significantly to the implementation and harmonization of tech-niques that can be used to evaluate the biological effects of pollutants in national monitoring programmes. An overview of national effect-based monitoring programmes of Member States is provided with the aim to support European countries and Regional Seas Conventions on their implementation. A summary of the national effects-based monitoring programmes has been pro-vided by twelve European countries represented at the WGBEC meetings. The adoption of bio-logical effects monitoring can differ widely and comparisons between approaches and the choice of biological effects methods used acts as an important tool. A summary of the main findings is presented. Furthermore, OSPAR's Hazardous Substances and Eutrophication Committee (HASEC) has en-couraged contracting parties to perform targeted biological effects monitoring to enhance the assessment of contaminants in sediment and biota towards the OSPAR QSR2023. WGBEC mem-bers contributed to the integrated biological effects approach assessment by providing data from their national monitoring activities to produce maps and figures to enable interpretations. Revision of the biological effects methods, including new techniques and developments, and the quality assurance of existing methods are core activities for the WGBEC, which require continu-ous discussion and evaluation by the group. Activities include the production of new ICES TIMES documents as well as intercalibration exercises to ensure Member States are providing comparable data for national monitoring. To this end, intercalibration exercises were performed under the BEQUALM programme for two of the more commonly used biological effects meth-ods, including micronucleus formation in mussel haemocytes and PAH metabolites in fish bile. These intercalibrations were successful despite identifying some variation in reported values be-tween laboratories. Further intercalibration exercises are planned and the WGBEC strongly sup-port the need for such quality assurance. In addition to the national monitoring activities and the different methods and approaches for determining the effects of contaminants on biological systems, the WGBEC was interested in discussing some key questions related to the potential impacts of contaminants to marine life. These questions included: the direct and indirect effects of natural and synthetic particles; how climate change and acidification parameters can interact with contaminants and influence bioa-vailability and effect; whether the structure of marine communities can be used to indicate con-taminant exposure; to provide guidance on performing risk assessments for contaminants of emerging concern; and to evaluate the effects of contaminants in marine sediments and whether current sediment toxicity tests are adequate. In addition, and as a wider concept, the linkages between contaminants in the marine environment and human health were also described.S

    Report of the Working Group of Biological Effects

    No full text
    The Working Group on Biological Effects of Contaminants (WGBEC) investigates the biological effects of contaminants in the marine environment. The group provides research and increases the understanding of contaminant interactions and effects, including the development of inte-grated biological effects monitoring strategies, which are used to support international research and monitoring. The WGBEC has contributed significantly to the implementation and harmonization of tech-niques that can be used to evaluate the biological effects of pollutants in national monitoring programmes. An overview of national effect-based monitoring programmes of Member States is provided with the aim to support European countries and Regional Seas Conventions on their implementation. A summary of the national effects-based monitoring programmes has been pro-vided by twelve European countries represented at the WGBEC meetings. The adoption of bio-logical effects monitoring can differ widely and comparisons between approaches and the choice of biological effects methods used acts as an important tool. A summary of the main findings is presented. Furthermore, OSPAR's Hazardous Substances and Eutrophication Committee (HASEC) has en-couraged contracting parties to perform targeted biological effects monitoring to enhance the assessment of contaminants in sediment and biota towards the OSPAR QSR2023. WGBEC mem-bers contributed to the integrated biological effects approach assessment by providing data from their national monitoring activities to produce maps and figures to enable interpretations. Revision of the biological effects methods, including new techniques and developments, and the quality assurance of existing methods are core activities for the WGBEC, which require continu-ous discussion and evaluation by the group. Activities include the production of new ICES TIMES documents as well as intercalibration exercises to ensure Member States are providing comparable data for national monitoring. To this end, intercalibration exercises were performed under the BEQUALM programme for two of the more commonly used biological effects meth-ods, including micronucleus formation in mussel haemocytes and PAH metabolites in fish bile. These intercalibrations were successful despite identifying some variation in reported values be-tween laboratories. Further intercalibration exercises are planned and the WGBEC strongly sup-port the need for such quality assurance. In addition to the national monitoring activities and the different methods and approaches for determining the effects of contaminants on biological systems, the WGBEC was interested in discussing some key questions related to the potential impacts of contaminants to marine life. These questions included: the direct and indirect effects of natural and synthetic particles; how climate change and acidification parameters can interact with contaminants and influence bioa-vailability and effect; whether the structure of marine communities can be used to indicate con-taminant exposure; to provide guidance on performing risk assessments for contaminants of emerging concern; and to evaluate the effects of contaminants in marine sediments and whether current sediment toxicity tests are adequate. In addition, and as a wider concept, the linkages between contaminants in the marine environment and human health were also described.Versión del edito
    corecore