1,100 research outputs found

    String splitting and strong coupling meson decay

    Full text link
    We study the decay of high spin mesons using the gauge/string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 SYM with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.Comment: 17 pages, 2 figures. V2: References added. V3: Minor correction

    Biomimetic solution-based coatings for functional applications

    Get PDF

    From ten to four and back again: how to generalize the geometry

    Full text link
    We discuss the four-dimensional N=1 effective approach in the study of warped type II flux compactifications with SU(3)x SU(3)-structure to AdS_4 or flat Minkowski space-time. The non-trivial warping makes it natural to use a supergravity formulation invariant under local complexified Weyl transformations. We obtain the classical superpotential from a standard argument involving domain walls and generalized calibrations and show how the resulting F-flatness and D-flatness equations exactly reproduce the full ten-dimensional supersymmetry equations. Furthermore, we consider the effect of non-perturbative corrections to this superpotential arising from gaugino condensation or Euclidean D-brane instantons. For the latter we derive the supersymmetry conditions in N=1 flux vacua in full generality. We find that the non-perturbative corrections induce a quantum deformation of the internal generalized geometry. Smeared instantons allow to understand KKLT-like AdS vacua from a ten-dimensional point of view. On the other hand, non-smeared instantons in IIB warped Calabi-Yau compactifications 'destabilize' the Calabi-Yau complex structure into a genuine generalized complex one. This deformation gives a geometrical explanation of the non-trivial superpotential for mobile D3-branes induced by the non-perturbative corrections.Comment: LaTeX, 47 pages, v2, references, hyperref added, v3, correcting small inaccuracies in eqs. (2.6a) and (5.16

    Fermions, T-duality and effective actions for D-branes in bosonic backgrounds

    Full text link
    We find the effective action for any D-brane in a general bosonic background of supergravity. The results are explicit in component fields up to second order in the fermions and are obtained in a covariant manner. No interaction terms between fermions and the field f=b+Ff=b+F, characteristic of the bosonic actions, are considered. These are reserved for future work. In order to obtain the actions, we reduce directly from the M2-brane world-volume action to the D2-brane world-volume action. Then, by means of T-duality, we obtain the other Dp-brane actions. The resulting Dp-brane actions can be written in a single compact and elegant expression.Comment: 22 pages, latex, version published by JHEP plus typos corrected in eq.(44) and eq.(47

    Deformations of calibrated D-branes in flux generalized complex manifolds

    Get PDF
    We study massless deformations of generalized calibrated cycles, which describe, in the language of generalized complex geometry, supersymmetric D-branes in N=1 supersymmetric compactifications with fluxes. We find that the deformations are classified by the first cohomology group of a Lie algebroid canonically associated to the generalized calibrated cycle, seen as a generalized complex submanifold with respect to the integrable generalized complex structure of the bulk. We provide examples in the SU(3) structure case and in a `genuine' generalized complex structure case. We discuss cases of lifting of massless modes due to world-volume fluxes, background fluxes and a generalized complex structure that changes type.Comment: 52 pages, added references, added comment on ellipticity in appendix B, made minor changes according to instructions referee JHE

    Wilson Loop, Regge Trajectory and Hadron Masses in a Yang-Mills Theory from Semiclassical Strings

    Full text link
    We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luescher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models.Comment: 52 pages, latex 3 times, v3: references adde

    Noncommutative Electrodynamics

    Get PDF
    In this paper we define a causal Lorentz covariant noncommutative (NC) classical Electrodynamics. We obtain an explicit realization of the NC theory by solving perturbatively the Seiberg-Witten map. The action is polynomial in the field strenght FF, allowing to preserve both causality and Lorentz covariance. The general structure of the Lagrangian is studied, to all orders in the perturbative expansion in the NC parameter θ\theta. We show that monochromatic plane waves are solutions of the equations of motion to all orders. An iterative method has been developed to solve the equations of motion and has been applied to the study of the corrections to the superposition law and to the Coulomb law.Comment: 13 pages, 2 figures, one reference adde

    Dirac equation for the supermembrane in a background with fluxes from a component description of the D=11 supergravity-supermembrane interacting system

    Full text link
    We present a simple derivation of the 'Dirac' equation for the supermembrane fermionic field in a D=11 supergravity background with fluxes by using a complete but gauge-fixed description of the supergravity-supermembrane interacting system previously developed. We also discuss the contributions linear in the supermembrane fermions -the Goldstone fields for the local supersymmetry spontaneously broken by the superbrane- to the field equations of the supergravity-supermembrane interacting system. The approach could also be applied to more complicated dynamical systems such as those involving the M5-brane and the D=10 Dirichlet branes.Comment: 1+22 pages, JHEP style. v2: cosmetic changes and references added to conform to the JHEP published versio

    D-branes on general N=1 backgrounds: superpotentials and D-terms

    Full text link
    We study the dynamics governing space-time filling D-branes on Type II flux backgrounds preserving four-dimensional N=1 supersymmetry. The four-dimensional superpotentials and D-terms are derived. The analysis is kept on completely general grounds thanks to the use of recently proposed generalized calibrations, which also allow one to show the direct link of the superpotentials and D-terms with BPS domain walls and cosmic strings respectively. In particular, our D-brane setting reproduces the tension of D-term strings found from purely four-dimensional analysis. The holomorphicity of the superpotentials is also studied and a moment map associated to the D-terms is proposed. Among different examples, we discuss an application to the study of D7-branes on SU(3)-structure backgrounds, which reproduces and generalizes some previous results.Comment: 50 pages; v2: table of contents, some clarifications and references added; v3: typos corrected and references adde

    D-branes on AdS flux compactifications

    Full text link
    We study D-branes in N=1 flux compactifications to AdS_4. We derive their supersymmetry conditions and express them in terms of background generalized calibrations. Basically because AdS has a boundary, the analysis of stability is more subtle and qualitatively different from the usual case of Minkowski compactifications. For instance, stable D-branes filling AdS_4 may wrap trivial internal cycles. Our analysis gives a geometric realization of the four-dimensional field theory approach of Freedman and collaborators. Furthermore, the one-to-one correspondence between the supersymmetry conditions of the background and the existence of generalized calibrations for D-branes is clarified and extended to any supersymmetric flux background that admits a time-like Killing vector and for which all fields are time-independent with respect to the associated time. As explicit examples, we discuss supersymmetric D-branes on IIA nearly Kaehler AdS_4 flux compactifications.Comment: 43 pages, 2 pictures, 1 table; v2: added references, color to figure and corrected typo in (6.21b
    • …
    corecore