58 research outputs found

    Evaporative fluorophore labeling of carbohydrates via reductive amination

    Get PDF
    As analytical glycomics became to prominence, newer and more efficient sample preparation methods are being developed. Albeit, numerous reductive amination based carbohydrate labeling protocols have been reported in the literature, the preferred way to conduct the reaction is in closed vials. Here we report on a novel evaporative labeling protocol with the great advantage of continuously concentrating the reagents during the tagging reaction, therefore accommodating to reach the optimal reagent concentrations for a wide range of glycan structures in a complex mixture. The optimized conditions of the evaporative labeling process minimized sialylation loss, otherwise representing a major issue in reductive amination based carbohydrate tagging. In addition, complete and uniform dispersion of dry samples was obtained by supplementing the low volume labeling mixtures (several microliters) with the addition of extra solvent (e.g., THF). Evaporative labeling is an automation-friendly glycan labeling method, suitable for standard open 96 well plate format operation

    Effect of the flow profile on separation efficiency in pressure-assisted reversed-polarity capillary zone electrophoresis of anions: Simulation and experimental evaluation

    Get PDF
    Capillary electrophoresis connected to electrospray ionization mass spectrometry is a promising combination to analyze complex biological samples. The use of sheathless electrospray ionization interfaces, such as a porous nanoelectrospray capillary emitter, requires the application of forward flow (either by pressure or electroosmosis) to maintain the electrospray process. The analysis of solute molecules with strong negative charges (e.g., aminopyrenetrisulfonate labeled glycans) necessitates a reversed-polarity capillary electrophoresis separation mode, in which case the electroosmotic flow is counter current, thus pressure assistance is necessary. In this study, we compared the effect of forced convection with and without counter electroosmotic flow on the resulting separation efficiency in capillary electrophoresis based on flow profile simulations by computational fluid dynamics technique and by actual experiments. The efficiencies of the detected peaks were calculated from the resulting electropherograms and found approximately 790 000 plates/m for electrophoresis with counter electroosmotic flow, 16 000 plates/m with pressure only (such as would be in open tubular liquid chromatography) and 400 000 plates/m for electrophoresis with simultaneous counter electroosmotic flow and forward pressure assistance, which validates the simulation data

    Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture Part 2: Image sequence analysis based evaluation and biological application

    Get PDF
    As a continuation of our previously published work, this paper presents a detailed evaluation of a microfabricated cell capture device utilizing a doubly tilted micropillar array. The device was fabricated using a novel hybrid technology based on the combination of proton beam writing and conventional lithography techniques. Tilted pillars offer unique flow characteristics and support enhanced fluidic interaction for improved immuno-affinity based cell capture. The performance of the microdevice was evaluated by an image sequence analysis based in-house developed single cell tracking system. Individual cell tracking allowed in-depth analysis of the cell-chip surface interaction mechanism from hydrodynamic point of view. Simulation results were validated by using the hybrid device and the optimized surface functionalization procedure. Finally, the cell capture capability of this new generation microdevice was demonstrated by efficiently arresting cells from a HT29 cellline suspension

    The mass and density of the dwarf planet (225088) 2007 OR10

    Full text link
    The satellite of (225088) 2007 OR10 was discovered on archival Hubble Space Telescope images and along with new observations with the WFC3 camera in late 2017 we have been able to determine the orbit. The orbit's notable eccentricity, e≈\approx0.3, may be a consequence of an intrinsically eccentric orbit and slow tidal evolution, but may also be caused by the Kozai mechanism. Dynamical considerations also suggest that the moon is small, Deff_{eff} << 100 km. Based on the newly determined system mass of 1.75x1021^{21} kg, 2007 OR10 is the fifth most massive dwarf planet after Eris, Pluto, Haumea and Makemake. The newly determined orbit has also been considered as an additional option in our radiometric analysis, provided that the moon orbits in the equatorial plane of the primary. Assuming a spherical shape for the primary this approach provides a size of 1230±\pm50 km, with a slight dependence on the satellite orbit orientation and primary rotation rate chosen, and a bulk density of 1.75±\pm0.07 g cm−3^{-3} for the primary. A previous size estimate that assumed an equator-on configuration (1535−225+75^{+75}_{-225} km) would provide a density of 0.92−0.14+0.46^{+0.46}_{-0.14} g cm−3^{-3}, unexpectedly low for a 1000 km-sized dwarf planet.Comment: Accepted for publication in Icaru

    Internal wettability investigation of mesoporous silica materials by ellipsometric porosimetry

    Get PDF
    Silica-based mesoporous films have been widely applied in the fabrication of advanced functional materials, such as anti-reflective coatings, bio-, and chemical sensing devices, due to their unique properties, e.g., high surface area, controlled porosity, and the ease and tailorability of their synthesis. Precise knowledge of their pore architecture is crucial, highlighting the need for accurate characterization tools. In this sense, ellipsometric porosimetry represents a powerful and versatile characterization platform, providing access to reliable information about total porosity, pore size, pore size dispersity, mechanical properties (Young's modulus) and surface area of a great variety of mesoporous thin films. While the underlying framework of modeling capillary condensation via the Kelvin equation is well established, one descriptor, the internal wettability of mesoporous architectures remains a challenging variable for reliable material characterization. Wetting on the nanoscale cannot be observed via the traditional drop-shape method, while approximating internal wetting by the macroscopic property can be inaccurate as the two wetting behaviors do not necessarily correlate. Herein, we present a method based on vacuum ellipsometric porosimetry for the determination of the internal contact angle of functionalized mesoporous silica thin films. Tuning of the surface energy for a known mesoporous architecture by methyl-functionalization enabled us to relate differences in the pore filling for various adsorptives (water, methanol, toluene, cyclohexane) to their internal contact angles. Our study serves as a guide for generalized internal contact angle determination suitable for a wide range of organic adsorptives and mesoporous sorbent materials

    N-Glycosylation Profiling of Human Blood in Type 2 Diabetes by Capillary Electrophoresis: A Preliminary Study

    Get PDF
    Currently, diagnosing type 2 diabetes (T2D) is a great challenge. Thus, there is a need to find rapid, simple, and reliable analytical methods that can detect the disease at an early stage. The aim of this work was to shed light on the importance of sample collection options, sample preparation conditions, and the applied capillary electrophoresis bioanalytical technique, for a highresolution determination of the N-glycan profile in human blood samples of patients with type 2 diabetes (T2D). To achieve the profile information of these complex oligosaccharides, linked by asparagine to hIgG in the blood, the glycoproteins of the samples needed to be cleaved, labelled, and purified with sufficient yield and selectivity. The resulting samples were analyzed by capillary electrophoresis, with laser-induced fluorescence detection. After separation parameter optimization, the capillary electrophoresis technique was implemented for efficient N-glycan profiling of whole blood samples from the diabetic patients. Our results revealed that there were subtle differences between the N-glycan profiles of the diabetic and control samples; in particular, two N-glycan structures were identified as potential glycobiomarkers that could reveal significant changes between the untreated/treated type 2 diabetic and control samples. By analyzing the resulting oligosaccharide profiles, clinically relevant information was obtained, revealing the differences between the untreated and HMG-CoA reductase-inhibitor-treated diabetic patients on changes in the N-glycan profile in the blood. In addition, the information from specific IgG N-glycosylation profiles in T2D could shed light on underlying inflammatory pathophysiological processes and lead to drug targets
    • …
    corecore