21,347 research outputs found
On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas
In this work the propulsion force developed in an asymmetric capacitor will
be calculated for three different diameters of the ground electrode. The used
ion source is a small diameter wire, which generates a positive corona
discharge in nitrogen gas directed to the ground electrode. By applying the
fluid dynamic and electrostatic theories all hydrodynamic and electrostatic
forces that act on the considered geometries will be computed in an attempt to
provide a physical insight on the force mechanism that acts on the asymmetrical
capacitors, and also to understand how to increase the efficiency of
propulsion.Comment: 13 pages, 8 figures, Accepted for publication in "Physics of Plasmas
Properties of WNh stars in the Small Magellanic Cloud: evidence for homogeneous evolution
We derive the physical properties of three WNh stars in the SMC to constrain
stellar evolution beyond the main sequence at low metallicity and to
investigate the metallicity dependence of the clumping properties of massive
stars. We compute atmosphere models to derive the stellar and wind properties
of the three WNh targets. A FUV/UV/optical/near-infrared analysis gives access
to temperatures, luminosities, mass loss rates, terminal velocities and stellar
abundances. All stars still have a large hydrogen mass fraction in their
atmosphere, and show clear signs of CNO processing in their surface abundances.
One of the targets can be accounted for by normal stellar evolution. It is a
star with initial mass around 40-50 Msun in, or close to, the core He burning
phase. The other two objects must follow a peculiar evolution, governed by fast
rotation. In particular, one object is likely evolving homogeneously due to its
position blue-ward of the main sequence and its high H mass fraction. The
clumping factor of one star is found to be 0.15+/-0.05. This is comparable to
values found for Galactic Wolf-Rayet stars, indicating that within the
uncertainties, the clumping factor does not seem to depend on metallicity.Comment: 16 pages. A&A accepte
Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data
We constrain the deviation of adiabatic evolution of the Universe using the
data on the Cosmic Microwave Background (CMB) temperature anisotropies measured
by the {\it Planck} satellite and a sample of 481 X-ray selected clusters with
spectroscopically measured redshifts. To avoid antenna beam effects, we bring
all the maps to the same resolution. We use a CMB template to subtract the
cosmological signal while preserving the Thermal Sunyaev-Zeldovich (TSZ)
anisotropies; next, we remove galactic foreground emissions around each cluster
and we mask out all known point sources. If the CMB black-body temperature
scales with redshift as , we constrain deviations of
adiabatic evolution to be , consistent with the
temperature-redshift relation of the standard cosmological model. This result
could suffer from a potential bias associated with the CMB
template, that we quantify it to be and with the same
sign than the measured value of , but is free from those biases
associated with using TSZ selected clusters; it represents the best constraint
to date of the temperature-redshift relation of the Big-Bang model using only
CMB data, confirming previous results.Comment: ApJ, in press. Manuscript matches the accepted version: 10 pages, 7
figures, 3 table
Properties of magnetic nanodots with perpendicular anisotropy
Nanodots with magnetic vortices have many potential applications, such as
magnetic memories (VRAMs) and spin transfer nano-oscillators (STNOs). Adding a
perpendicular anisotropy term to the magnetic energy of the nanodot it becomes
possible to tune the vortex core properties. This can be obtained, e.g., in Co
nanodots by varying the thickness of the Co layer in a Co/Pt stack. Here we
discuss the spin configuration of circular and elliptical nanodots for
different perpendicular anisotropies; we show for nanodisks that micromagnetic
simulations and analytical results agree. Increasing the perpendicular
anisotropy, the vortex core radii increase, the phase diagrams are modified and
new configurations appear; the knowledge of these phase diagrams is relevant
for the choice of optimum nanodot dimensions for applications. MFM measurements
on Co/Pt multilayers confirm the trend of the vortex core diameters with
varying Co layer thicknesses.Comment: 7 pages, 8 figure
- …