20,148 research outputs found

    On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

    Full text link
    In this work the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.Comment: 13 pages, 8 figures, Accepted for publication in "Physics of Plasmas

    Properties of WNh stars in the Small Magellanic Cloud: evidence for homogeneous evolution

    Full text link
    We derive the physical properties of three WNh stars in the SMC to constrain stellar evolution beyond the main sequence at low metallicity and to investigate the metallicity dependence of the clumping properties of massive stars. We compute atmosphere models to derive the stellar and wind properties of the three WNh targets. A FUV/UV/optical/near-infrared analysis gives access to temperatures, luminosities, mass loss rates, terminal velocities and stellar abundances. All stars still have a large hydrogen mass fraction in their atmosphere, and show clear signs of CNO processing in their surface abundances. One of the targets can be accounted for by normal stellar evolution. It is a star with initial mass around 40-50 Msun in, or close to, the core He burning phase. The other two objects must follow a peculiar evolution, governed by fast rotation. In particular, one object is likely evolving homogeneously due to its position blue-ward of the main sequence and its high H mass fraction. The clumping factor of one star is found to be 0.15+/-0.05. This is comparable to values found for Galactic Wolf-Rayet stars, indicating that within the uncertainties, the clumping factor does not seem to depend on metallicity.Comment: 16 pages. A&A accepte

    Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data

    Get PDF
    We constrain the deviation of adiabatic evolution of the Universe using the data on the Cosmic Microwave Background (CMB) temperature anisotropies measured by the {\it Planck} satellite and a sample of 481 X-ray selected clusters with spectroscopically measured redshifts. To avoid antenna beam effects, we bring all the maps to the same resolution. We use a CMB template to subtract the cosmological signal while preserving the Thermal Sunyaev-Zeldovich (TSZ) anisotropies; next, we remove galactic foreground emissions around each cluster and we mask out all known point sources. If the CMB black-body temperature scales with redshift as T(z)=T0(1+z)1−αT(z)=T_0(1+z)^{1-\alpha}, we constrain deviations of adiabatic evolution to be α=−0.007±0.013\alpha=-0.007\pm 0.013, consistent with the temperature-redshift relation of the standard cosmological model. This result could suffer from a potential bias δα\delta\alpha associated with the CMB template, that we quantify it to be ∣δα∣≤0.02|\delta\alpha|\le 0.02 and with the same sign than the measured value of α\alpha, but is free from those biases associated with using TSZ selected clusters; it represents the best constraint to date of the temperature-redshift relation of the Big-Bang model using only CMB data, confirming previous results.Comment: ApJ, in press. Manuscript matches the accepted version: 10 pages, 7 figures, 3 table

    Properties of magnetic nanodots with perpendicular anisotropy

    Full text link
    Nanodots with magnetic vortices have many potential applications, such as magnetic memories (VRAMs) and spin transfer nano-oscillators (STNOs). Adding a perpendicular anisotropy term to the magnetic energy of the nanodot it becomes possible to tune the vortex core properties. This can be obtained, e.g., in Co nanodots by varying the thickness of the Co layer in a Co/Pt stack. Here we discuss the spin configuration of circular and elliptical nanodots for different perpendicular anisotropies; we show for nanodisks that micromagnetic simulations and analytical results agree. Increasing the perpendicular anisotropy, the vortex core radii increase, the phase diagrams are modified and new configurations appear; the knowledge of these phase diagrams is relevant for the choice of optimum nanodot dimensions for applications. MFM measurements on Co/Pt multilayers confirm the trend of the vortex core diameters with varying Co layer thicknesses.Comment: 7 pages, 8 figure
    • …
    corecore