9,284 research outputs found
Constraining spatial variations of the fine structure constant using clusters of galaxies and Planck data
We propose an improved methodology to constrain spatial variations of the
fine structure constant using clusters of galaxies. We use the {\it Planck}
2013 data to measure the thermal Sunyaev-Zeldovich effect at the location of
618 X-ray selected clusters. We then use a Monte Carlo Markov Chain algorithm
to obtain the temperature of the Cosmic Microwave Background at the location of
each galaxy cluster. When fitting three different phenomenological
parameterizations allowing for monopole and dipole amplitudes in the value of
the fine structure constant we improve the results of earlier analysis
involving clusters and the CMB power spectrum, and we also found that the
best-fit direction of a hypothetical dipole is compatible with the direction of
other known anomalies. Although the constraining power of our current datasets
do not allow us to test the indications of a fine-structure constant dipole
obtained though high-resolution optical/UV spectroscopy, our results do
highlight that clusters of galaxies will be a very powerful tool to probe
fundamental physics at low redshift.Comment: 11 pages, 5 figures and 3 tables. Accepted for publication in
Physical Review
The solution space of metabolic networks: producibility, robustness and fluctuations
Flux analysis is a class of constraint-based approaches to the study of
biochemical reaction networks: they are based on determining the reaction flux
configurations compatible with given stoichiometric and thermodynamic
constraints. One of its main areas of application is the study of cellular
metabolic networks. We briefly and selectively review the main approaches to
this problem and then, building on recent work, we provide a characterization
of the productive capabilities of the metabolic network of the bacterium E.coli
in a specified growth medium in terms of the producible biochemical species.
While a robust and physiologically meaningful production profile clearly
emerges (including biomass components, biomass products, waste etc.), the
underlying constraints still allow for significant fluctuations even in key
metabolites like ATP and, as a consequence, apparently lay the ground for very
different growth scenarios.Comment: 10 pages, prepared for the Proceedings of the International Workshop
on Statistical-Mechanical Informatics, March 7-10, 2010, Kyoto, Japa
A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development: Executive summary
A cross impact model of the U.S. telecommunications system was developed. For this model, it was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impacts). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics, throughout the telecommunications system
A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development, volume 2
The appendices for the cross impact methodology are presented. These include: user's guide, telecommunication events, cross impacts, projection of historical trends, and projection of trends in satellite communications
A cross impact methodology for the assessment of US telecommunications system with application to fiber optics development, volume 1
A cross impact model of the U.S. telecommunications system was developed. It was necessary to prepare forecasts of the major segments of the telecommunications system, such as satellites, telephone, TV, CATV, radio broadcasting, etc. In addition, forecasts were prepared of the traffic generated by a variety of new or expanded services, such as electronic check clearing and point of sale electronic funds transfer. Finally, the interactions among the forecasts were estimated (the cross impact). Both the forecasts and the cross impacts were used as inputs to the cross impact model, which could then be used to stimulate the future growth of the entire U.S. telecommunications system. By varying the inputs, technology changes or policy decisions with regard to any segment of the system could be evaluated in the context of the remainder of the system. To illustrate the operation of the model, a specific study was made of the deployment of fiber optics throughout the telecommunications system
LoCuSS: The Near-Infrared Luminosity and Weak-Lensing Mass Scaling Relation of Galaxy Clusters
We present the first scaling relation between weak-lensing galaxy cluster
mass, , and near-infrared luminosity, . Our results are based on
17 clusters observed with wide-field instruments on Subaru, the United Kingdom
Infrared Telescope, the Mayall Telescope, and the MMT. We concentrate on the
relation between projected 2D weak-lensing mass and spectroscopically confirmed
luminosity within 1Mpc, modelled as , obtaining a power
law slope of and an intrinsic scatter of
. Intrinsic scatter of ~10% is a
consistent feature of our results regardless of how we modify our approach to
measuring the relationship between mass and light. For example, deprojecting
the mass and measuring both quantities within , that is itself
obtained from the lensing analysis, yields
and . We also
find that selecting members based on their (J-K) colours instead of
spectroscopic redshifts neither increases the scatter nor modifies the slope.
Overall our results indicate that near-infrared luminosity measured on scales
comparable with (typically 1Mpc for our sample) is a low scatter and
relatively inexpensive proxy for weak-lensing mass. Near-infrared luminosity
may therefore be a useful mass proxy for cluster cosmology experiments.Comment: 9 Pages, 5 Figures, 3 Tables. Submitted to MNRA
Constraining the redshift evolution of the Cosmic Microwave Background black-body temperature with PLANCK data
We constrain the deviation of adiabatic evolution of the Universe using the
data on the Cosmic Microwave Background (CMB) temperature anisotropies measured
by the {\it Planck} satellite and a sample of 481 X-ray selected clusters with
spectroscopically measured redshifts. To avoid antenna beam effects, we bring
all the maps to the same resolution. We use a CMB template to subtract the
cosmological signal while preserving the Thermal Sunyaev-Zeldovich (TSZ)
anisotropies; next, we remove galactic foreground emissions around each cluster
and we mask out all known point sources. If the CMB black-body temperature
scales with redshift as , we constrain deviations of
adiabatic evolution to be , consistent with the
temperature-redshift relation of the standard cosmological model. This result
could suffer from a potential bias associated with the CMB
template, that we quantify it to be and with the same
sign than the measured value of , but is free from those biases
associated with using TSZ selected clusters; it represents the best constraint
to date of the temperature-redshift relation of the Big-Bang model using only
CMB data, confirming previous results.Comment: ApJ, in press. Manuscript matches the accepted version: 10 pages, 7
figures, 3 table
Statistical mechanics of the mixed majority-minority game with random external information
We study the asymptotic macroscopic properties of the mixed majority-minority
game, modeling a population in which two types of heterogeneous adaptive
agents, namely ``fundamentalists'' driven by differentiation and
``trend-followers'' driven by imitation, interact. The presence of a fraction f
of trend-followers is shown to induce (a) a significant loss of informational
efficiency with respect to a pure minority game (in particular, an efficient,
unpredictable phase exists only for f<1/2), and (b) a catastrophic increase of
global fluctuations for f>1/2. We solve the model by means of an approximate
static (replica) theory and by a direct dynamical (generating functional)
technique. The two approaches coincide and match numerical results
convincingly.Comment: 19 pages, 3 figure
Typical properties of optimal growth in the Von Neumann expanding model for large random economies
We calculate the optimal solutions of the fully heterogeneous Von Neumann
expansion problem with processes and goods in the limit .
This model provides an elementary description of the growth of a production
economy in the long run. The system turns from a contracting to an expanding
phase as increases beyond . The solution is characterized by a universal
behavior, independent of the parameters of the disorder statistics. Associating
technological innovation to an increase of , we find that while such an
increase has a large positive impact on long term growth when , its
effect on technologically advanced economies () is very weak.Comment: 8 pages, 1 figur
- …