9,455 research outputs found

    Generation of polarization entangled photon pairs by a single crystal interferometric source pumped by femtosecond laser pulses

    Get PDF
    Photon pairs, highly entangled in polarization have been generated under femtosecond laser pulse excitation by a type I crystal source, operating in a single arm interferometric scheme. The relevant effects of temporal walk-off existing in these conditions between the ordinary and extraordinary photons were experimentally investigated. By introducing a suitable temporal compensation between the two orthogonal polarization components highly entangled pulsed states were obtained

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    Continuous variable cloning via network of parametric gates

    Full text link
    We propose an experimental scheme for the cloning machine of continuous quantum variables through a network of parametric amplifiers working as input-output four-port gates.Comment: 4 pages, 2 figures. To appear on Phys. Rev. Let

    Self-steepening of light pulses

    Get PDF
    Self-steepening of light pulses due to propagation in medium with intensity-dependent index of refractio

    A Population of Massive Globular Clusters in NGC 5128

    Full text link
    We present velocity dispersion measurements of 14 globular clusters in NGC 5128 (Centarus A) obtained with the MIKE echelle spectrograph on the 6.5m Magellan Clay telescope. These clusters are among the most luminous globular clusters in NGC 5128 and have velocity dispersions comparable to the most massive clusters known in the Local Group, ranging from 10 - 30 km/s. We describe in detail our cross-correlation measurements, as well as simulations to quantify the uncertainties. These 14 globular clusters are the brightest NGC 5128 globular clusters with surface photometry and structural parameters measured from the Hubble Space Telescope. We have used these measurements to derive masses and mass-to-light ratios for all of these clusters and establish that the fundamental plane relations for globular clusters extend to an order of magnitude higher mass than in the Local Group. The mean mass-to-light ratio for the NGC 5128 clusters is ~3+/-1, higher than measurements for all but the most massive Local Group clusters. These massive clusters begin to bridge the mass gap between the most massive star clusters and the lowest-mass galaxies. We find that the properties of NGC 5128 globular clusters overlap quite well with the central properties of nucleated dwarf galaxies and ultracompact dwarf galaxies. As six of these clusters also show evidence for extratidal light, we hypothesize that at least some of these massive clusters are the nuclei of tidally stripped dwarfs.Comment: ApJ Accepted, 15 pages, 9 figures, uses emulateapj.st

    An adaptive stigmergy-based system for evaluating technological indicator dynamics in the context of smart specialization

    Full text link
    Regional innovation is more and more considered an important enabler of welfare. It is no coincidence that the European Commission has started looking at regional peculiarities and dynamics, in order to focus Research and Innovation Strategies for Smart Specialization towards effective investment policies. In this context, this work aims to support policy makers in the analysis of innovation-relevant trends. We exploit a European database of the regional patent application to determine the dynamics of a set of technological innovation indicators. For this purpose, we design and develop a software system for assessing unfolding trends in such indicators. In contrast with conventional knowledge-based design, our approach is biologically-inspired and based on self-organization of information. This means that a functional structure, called track, appears and stays spontaneous at runtime when local dynamism in data occurs. A further prototyping of tracks allows a better distinction of the critical phenomena during unfolding events, with a better assessment of the progressing levels. The proposed mechanism works if structural parameters are correctly tuned for the given historical context. Determining such correct parameters is not a simple task since different indicators may have different dynamics. For this purpose, we adopt an adaptation mechanism based on differential evolution. The study includes the problem statement and its characterization in the literature, as well as the proposed solving approach, experimental setting and results.Comment: mail: [email protected]

    The three-body recombination of a condensed Bose gas near a Feshbach resonance

    Full text link
    In this paper, we study the three-body recombination rate of a homogeneous dilute Bose gas with a Feshbach resonance at zero temperature. The ground state and excitations of this system are obtained. The three-body recombination in the ground state is due to the break-up of an atom pair in the quantum depletion and the formation of a molecule by an atom from the broken pair and an atom from the condensate. The rate of this process is in good agreement with the experiment on 23^{23}Na in a wide range of magnetic fields.Comment: 10 pages, 2 figures, to be published in Phys. Rev.

    Realization of a Decoherence-free, Optimally Distinguishable Mesoscopic Quantum Superposition

    Full text link
    We report the realization of an entangled quantum superposition of M=12 photons by a high gain, quantum-injected optical parametric amplification. The system is found so highly resilient against decoherence to exhibit directly accessible mesoscopic interference effects at normal temperature. By modern tomographic methods the non-separability and the quantum superposition are demonstrated for the overall mesoscopic output state of the dynamic ''closed system''. The device realizes the condition conceived by Erwin Schroedinger with his 1935 paradigmatic ''Cat'' apologue, a fundamental landmark in quantum mechanics.Comment: 10 pages, 3 figure

    Stellar Velocity Dispersion Measurements in High-Luminosity Quasar Hosts and Implications for the AGN Black Hole Mass Scale

    Full text link
    We present new stellar velocity dispersion measurements for four luminous quasars with the NIFS instrument and the ALTAIR laser guide star adaptive optics system on the Gemini North 8-m telescope. Stellar velocity dispersion measurements and measurements of the supermassive black hole masses in luminous quasars are necessary to investigate the coevolution of black holes and galaxies, trace the details of accretion, and probe the nature of feedback. We find that higher-luminosity quasars with higher-mass black holes are not offset with respect to the MBH-sigma relation exhibited by lower-luminosity AGNs with lower-mass black holes, nor do we see correlations with galaxy morphology. As part of this analysis, we have recalculated the virial products for the entire sample of reverberation-mapped AGNs and used these data to redetermine the mean virial factor hfi that places the reverberation data on the quiescent M_BH-sigma relation. With our updated measurements and new additions to the AGN sample, we obtain = 4.31 +/- 1.05, which is slightly lower than, but consistent with, most previous determinations.Comment: Accepted for publication in ApJ. For a brief video highlighting the results of this paper, see: http://www.youtube.com/watch?v=Mxx80aOVw1
    • 

    corecore