3,496 research outputs found
How Mitochondrial DNA Can Write Pre-History: Kinship and Culture in Duero Basin (Spain) during Chalcolithic and Bronze Age
The chronological period from the beginning of the Chalcolithic Age to the end of the Bronze Age on the Iberian northern sub-plateau of the Iberic Peninsula involves interesting social and cultural phenomena, such as the appearance of the Bell Beaker and, later, the Cogotas I cultures. This work constructs a genetic characterisation of the maternal lineages of the human population that lived on the northern sub-plateau between 5000 and 3000 years ago through an analysis of mitochondrial DNA (mtDNA), a kind of genetic marker that is inherited through maternal lineages, unaltered from generation to generation. Population and cultural questions are investigated through mtDNA analyses. This study intends to shed light on the following questions. Were individuals who were buried together in multiple or collective burials biologically related through their maternal lineages? Were there distinct maternal human lineages in the same or different geographical areas if different material cultures (Bell Beaker and Cogotas I) were associated with the arrival of new human populations who established close biological relationships with the endogenous populations? Or could this be the result of the transmission of knowledge without human populations mixing? Another important question is whether the material cultures were related to the female populations. We analysed 91 individuals from 28 different archaeological sites of the Iberian northern sub-plateau from four different chrono-cultural periods (Pre-Bell Beaker, Bell Beaker, Proto-Cogotas I, and Cogotas I), from the end of the Chalcolithic Age up to the Bronze Age. There were two historical moments of new populations arriving: the first during the Pre-Bell Beaker period, associated with the K mtDNA haplogroup, and the second during the Proto-Cogotas I culture, with new lineages of the H, HVO, and T haplogroups. Neither of these new population flows were directly associated with the maximum development of the two main material cultures Bell Beaker and Cogotas I, so they must have occurred immediately beforehand, during the Pre-Bell Beaker and Proto-Cogotas I periods, respectively. However, we cannot discard an association between the populations and material cultures. Curiously, it has also been observed that there was also a tendency towards multiple burials, in which the individuals who were buried together belonged to the same maternal lineage, during these two periods of population change. This study has shed some light on the populational changes that occurred through these different periods in this specific geographical area of the northern sub-plateau of the Iberian Peninsula
Family History in the Iberian Peninsula during Chalcolithic and Bronze Age: An Interpretation through the Genetic Analysis of Plural Burials
Throughout history, it has been observed that human populations have buried the deceased members of their communities following different patterns. During the Copper Age and the Bronze Age-periods on which this study focuses-in the northern sub-plateau of the Iberian Peninsula, we identified different patterns of multiple or collective burial. This work analyzes a total of 58 individuals buried in different multiple or collective graves, to investigate whether the practice of these burials implies a family or biological link between individuals buried together. With this aim, STR markers of nuclear DNA were analyzed, as well as the hypervariable regions I and II of mitochondrial DNA, establishing both close kinship relationships and relationships through maternal lineage. We observed different burial patterns, detecting certain maternal lines preserved in some common burials maintained over time. Close family relationships were observed to a lesser extent, with some occasional exceptions. The results of the analysis formed the basis for a discussion on the concepts of family and community
Up-regulation of HDACs, a harbinger of uraemic endothelial dysfunction, is prevented by defibrotide
Altres ajuts: This work was supported by Jazz Pharmaceuticals Plc (IST-16-10355 to MDR. and EC); German José Carreras Leukaemia Foundation (Grant 11R/2016 and 03R/2019 to MDR. and EC); [...]. We would like to thank the Proteomics unit staff (CCIT, University of Barcelona) for their support in the proteomic assay performance and analysis, and to the Primary Hemostasis laboratory group for their technical support. We also acknowledge the collaboration of Dr Josep Maria Cruzado of Institut d'Hemodiàlisi Barcelona who collaborated in obtaining the blood samples, the staff of the Maternitat Hospital, in Barcelona, for providing the umbilical cords that made possible some of the current results and to Shook Studio for the visual abstract design.Endothelial dysfunction is an earlier contributor to the development of atherosclerosis in chronic kidney disease (CKD), in which the role of epigenetic triggers cannot be ruled out. Endothelial protective strategies, such as defibrotide (DF), may be useful in this scenario. We evaluated changes induced by CKD on endothelial cell proteome and explored the effect of DF and the mechanisms involved. Human umbilical cord vein endothelial cells were exposed to sera from healthy donors (n = 20) and patients with end-stage renal disease on haemodialysis (n = 20). Differential protein expression was investigated by using a proteomic approach, Western blot and immunofluorescence. HDAC1 and HDAC2 overexpression was detected. Increased HDAC1 expression occurred at both cytoplasm and nucleus. These effects were dose-dependently inhibited by DF. Both the HDACs inhibitor trichostatin A and DF prevented the up-regulation of the endothelial dysfunction markers induced by the uraemic milieu: intercellular adhesion molecule-1, surface Toll-like receptor-4, von Willebrand Factor and reactive oxygen species. Moreover, DF down-regulated HDACs expression through the PI3/AKT signalling pathway. HDACs appear as key modulators of the CKD-induced endothelial dysfunction as specific blockade by trichostatin A or by DF prevents endothelial dysfunction responses to the CKD insult. Moreover, DF exerts its endothelial protective effect by inhibiting HDAC up-regulation likely through PI3K/AKT
Mitophagy and the therapeutic clearance of damaged mitochondria for neuroprotection
Mitochondria are the foremost producers of the cellular energy currency ATP. They are also a significant source of reactive oxygen species and an important buffer of intracellular calcium. Mitochondrial retrograde signals regulate energy homeostasis and pro-survival elements whereas anterograde stimuli can trigger programmed cell death. Maintenance of a healthy, functional mitochondria network is therefore essential, and several mechanisms of mitochondrial quality control have been described. Mitochondrial dysfunction is linked to several neurodegenerative conditions including Parkinson, and Huntingdon diseases as well as Amyotrophic lateral sclerosis. Understanding the mechanisms governing mitochondrial quality control may reveal novel strategies for pharmacological intervention and disease therapy
Silicon-organic hybrid (SOH) devices and their use in comb-based communication systems
Advanced wavelength-division multiplex-ing (WDM) requires both efficient multi-wavelength light sources to generate optical carriers and highly scalable photonic-electronic interfaces to encode data on these carriers. In this paper, we give an overview on our recent progress regarding silicon-organic hy-brid (SOH) integration and comb-based WDM transmission
A Single-Run Next-Generation Sequencing (NGS) Assay for the Simultaneous Detection of Both Gene Mutations and Large Chromosomal Abnormalities in Patients with Myelodysplastic Syndromes (MDS) and Related Myeloid Neoplasms
Chromosomal abnormalities and somatic mutations are found in patients with myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) in around 50-80% of cases. The identification of these alterations is important for the accurate diagnosis and prognostic classification of these patients. Often, an apparently normal or failed karyotype might lead to an inadequate estimation of the prognostic risk, and several strategies should be combined to solve these cases. The aim of this study was to introduce a novel next-generation sequencing (NGS)-based strategy for the simultaneous detection of all the clinically relevant genetic alterations associated with these disorders. We validated this approach on a large cohort of patients by comparing our findings with those obtained with standard-of-care methods (i.e., karyotype and SNP-arrays). We show that our platform represents a significant improvement on current strategies in defining diagnosis and risk stratification of patients with MDS and myeloid-related disorders. Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms are clonal disorders that share most of their cytogenetic and molecular alterations. Despite the increased knowledge of the prognostic importance of genetics in these malignancies, next-generation sequencing (NGS) has not been incorporated into clinical practice in a validated manner, and the conventional karyotype remains mandatory in the evaluation of suspected cases. However, non-informative cytogenetics might lead to an inadequate estimation of the prognostic risk. Here, we present a novel targeted NGS-based assay for the simultaneous detection of all the clinically relevant genetic alterations associated with these disorders. We validated this platform in a large cohort of patients by performing a one-to-one comparison with the lesions from karyotype and single-nucleotide polymorphism (SNP) arrays. Our strategy demonstrated an approximately 97% concordance with standard clinical assays, showing sensitivity at least equivalent to that of SNP arrays and higher than that of conventional cytogenetics. In addition, this NGS assay was able to identify both copy-neutral loss of heterozygosity events distributed genome-wide and copy number alterations, as well as somatic mutations within significant driver genes. In summary, we show a novel NGS platform that represents a significant improvement to current strategies in defining diagnosis and risk stratification of patients with MDS and myeloid-related disorder
- …