81 research outputs found
Molecular signatures of maturing dendritic cells: implications for testing the quality of dendritic cell therapies
<p>Abstract</p> <p>Background</p> <p>Dendritic cells (DCs) are often produced by granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) stimulation of monocytes. To improve the effectiveness of DC adoptive immune cancer therapy, many different agents have been used to mature DCs. We analyzed the kinetics of DC maturation by lipopolysaccharide (LPS) and interferon-γ (IFN-γ) induction in order to characterize the usefulness of mature DCs (mDCs) for immune therapy and to identify biomarkers for assessing the quality of mDCs.</p> <p>Methods</p> <p>Peripheral blood mononuclear cells were collected from 6 healthy subjects by apheresis, monocytes were isolated by elutriation, and immature DCs (iDCs) were produced by 3 days of culture with GM-CSF and IL-4. The iDCs were sampled after 4, 8 and 24 hours in culture with LPS and IFN-γ and were then assessed by flow cytometry, ELISA, and global gene and microRNA (miRNA) expression analysis.</p> <p>Results</p> <p>After 24 hours of LPS and IFN-γ stimulation, DC surface expression of CD80, CD83, CD86, and HLA Class II antigens were up-regulated. Th1 attractant genes such as CXCL9, CXCL10, CXCL11 and CCL5 were up-regulated during maturation but not Treg attractants such as CCL22 and CXCL12. The expression of classical mDC biomarker genes CD83, CCR7, CCL5, CCL8, SOD2, MT2A, OASL, GBP1 and HES4 were up-regulated throughout maturation while MTIB, MTIE, MTIG, MTIH, GADD45A and LAMP3 were only up-regulated late in maturation. The expression of miR-155 was up-regulated 8-fold in mDCs.</p> <p>Conclusion</p> <p>DCs, matured with LPS and IFN-γ, were characterized by increased levels of Th1 attractants as opposed to Treg attractants and may be particularly effective for adoptive immune cancer therapy.</p
Adipose Inflammation Initiates Recruitment of Leukocytes to Mouse Femoral Artery: Role of Adipo-Vascular Axis in Chronic Inflammation
Background: Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral artery after adipose tissue transplantation. Methods and Results: We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C57BL/6 mice fed normal chow (NC) or a high fat diet (HF), then transplanted the tissues into the perivascular area of the femoral artery of recipient C57/BL6 mice. Quantitative intravital microscopic analysis revealed an increase in adherent leukocytes after adipose tissue transplantation, with VIS found to induce significantly more leukocyte accumulation as compared to SQ. Moreover, adipose tissues from HF fed mice showed significantly more adhesion to the femoral artery. Simultaneous flow cytometry demonstrated upregulation of CD11b on peripheral granulocyte and monocytes after adipose tissue transplantation. We also observed dominant expressions of the inflammatory cytokine IL-6, and chemokines MCP-1 and MIP-1b in the stromal vascular fraction (SVF) of these adipose tissues as well as sera of recipient mice after transplantation. Finally, massive accumulations of pro-inflammatory and dendritic cells were detected in mice with VIS transplantation as compared to SQ, as well as in HF mice as compared to those fed NC
Evidence for Positive Selection on a Number of MicroRNA Regulatory Interactions during Recent Human Evolution
MicroRNA (miRNA)–mediated gene regulation is of critical functional importance in animals and is thought to be largely constrained during evolution. However, little is known regarding evolutionary changes of the miRNA network and their role in human evolution. Here we show that a number of miRNA binding sites display high levels of population differentiation in humans and thus are likely targets of local adaptation. In a subset we demonstrate that allelic differences modulate miRNA regulation in mammalian cells, including an interaction between miR-155 and TYRP1, an important melanosomal enzyme associated with human pigmentary differences. We identify alternate alleles of TYRP1 that induce or disrupt miR-155 regulation and demonstrate that these alleles are selected with different modes among human populations, causing a strong negative correlation between the frequency of miR-155 regulation of TYRP1 in human populations and their latitude of residence. We propose that local adaptation of microRNA regulation acts as a rheostat to optimize TYRP1 expression in response to differential UV radiation. Our findings illustrate the evolutionary plasticity of the microRNA regulatory network in recent human evolution
The SARS-CoV-2 Alpha variant was associated with increased clinical severity of COVID-19 in Scotland: A genomics-based retrospective cohort analysis
Objectives The SARS-CoV-2 Alpha variant was associated with increased transmission relative to other variants present at the time of its emergence and several studies have shown an association between Alpha variant infection and increased hospitalisation and 28-day mortality. However, none have addressed the impact on maximum severity of illness in the general population classified by the level of respiratory support required, or death. We aimed to do this. Methods In this retrospective multi-centre clinical cohort sub-study of the COG-UK consortium, 1475 samples from Scottish hospitalised and community cases collected between 1st November 2020 and 30th January 2021 were sequenced. We matched sequence data to clinical outcomes as the Alpha variant became dominant in Scotland and modelled the association between Alpha variant infection and severe disease using a 4-point scale of maximum severity by 28 days: 1. no respiratory support, 2. supplemental oxygen, 3. ventilation and 4. death. Results Our cumulative generalised linear mixed model analyses found evidence (cumulative odds ratio: 1.40, 95% CI: 1.02, 1.93) of a positive association between increased clinical severity and lineage (Alpha variant versus pre-Alpha variants). Conclusions The Alpha variant was associated with more severe clinical disease in the Scottish population than co-circulating lineages.
Tracking SARS-CoV-2 mutations and variants through the COG-UK-Mutation Explorer
COG-UK Mutation Explorer (COG-UK-ME, http://sars2.cvr.gla.ac.uk/cog-uk/-last accessed date 16 March 2022) is a web resource that displays knowledge and analyses on SARS-CoV-2 virus genome mutations and variants circulating in the UK, with a focus on the observed amino acid replacements that have an antigenic role in the context of the human humoral and cellular immune response. This analysis is based on more than 2 million genome sequences (as of March 2022) for UK SARS-CoV-2 data held in the CLIMB-COVID centralised data environment. COG-UK-ME curates these data and displays analyses that are cross-referenced to experimental data collated from the primary literature. The aim is to track mutations of immunological importance that are accumulating in current variants of concern and variants of interest that could alter the neutralising activity of monoclonal antibodies (mAbs), convalescent sera, and vaccines. Changes in epitopes recognised by T cells, including those where reduced T cell binding has been demonstrated, are reported. Mutations that have been shown to confer SARS-CoV-2 resistance to antiviral drugs are also included. Using visualisation tools, COG-UK-ME also allows users to identify the emergence of variants carrying mutations that could decrease the neutralising activity of both mAbs present in therapeutic cocktails, e.g. Ronapreve. COG-UK-ME tracks changes in the frequency of combinations of mutations and brings together the curated literature on the impact of those mutations on various functional aspects of the virus and therapeutics. Given the unpredictable nature of SARS-CoV-2 as exemplified by yet another variant of concern, Omicron, continued surveillance of SARS-CoV-2 remains imperative to monitor virus evolution linked to the efficacy of therapeutics
Recurrent SARS-CoV-2 mutations in immunodeficient patients
Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in immunodeficient patients are an important source of variation for the virus but are understudied. Many case studies have been published which describe one or a small number of long-term infected individuals but no study has combined these sequences into a cohesive dataset. This work aims to rectify this and study the genomics of this patient group through a combination of literature searches as well as identifying new case series directly from the COVID-19 Genomics UK (COG-UK) dataset. The spike gene receptor-binding domain and N-terminal domain (NTD) were identified as mutation hotspots. Numerous mutations associated with variants of concern were observed to emerge recurrently. Additionally a mutation in the envelope gene, T30I was determined to be the second most frequent recurrently occurring mutation arising in persistent infections. A high proportion of recurrent mutations in immunodeficient individuals are associated with ACE2 affinity, immune escape, or viral packaging optimisation.There is an apparent selective pressure for mutations that aid cell–cell transmission within the host or persistence which are often different from mutations that aid inter-host transmission, although the fact that multiple recurrent de novo mutations are considered defining for variants of concern strongly indicates that this potential source of novel variants should not be discounted
Spatial growth rate of emerging SARS-CoV-2 lineages in England, September 2020-December 2021
This paper uses a robust method of spatial epidemiological analysis to assess the spatial growth rate of multiple lineages of SARS-CoV-2 in the local authority areas of England, September 2020-December 2021. Using the genomic surveillance records of the COVID-19 Genomics UK (COG-UK) Consortium, the analysis identifies a substantial (7.6-fold) difference in the average rate of spatial growth of 37 sample lineages, from the slowest (Delta AY.4.3) to the fastest (Omicron BA.1). Spatial growth of the Omicron (B.1.1.529 and BA) variant was found to be 2.81× faster than the Delta (B.1.617.2 and AY) variant and 3.76× faster than the Alpha (B.1.1.7 and Q) variant. In addition to AY.4.2 (a designated variant under investigation, VUI-21OCT-01), three Delta sublineages (AY.43, AY.98 and AY.120) were found to display a statistically faster rate of spatial growth than the parent lineage and would seem to merit further investigation. We suggest that the monitoring of spatial growth rates is a potentially valuable adjunct to outbreak response procedures for emerging SARS-CoV-2 variants in a defined population
- …