82 research outputs found

    The Determinants of Residential Water Demand Empirical Evidence for a Panel of Italian Municipalities

    Full text link
    We present empirical evidence on the determinants of residential water demand for one Italian region, Emilia-Romagna, by using municipal panel data. The estimated water demand price elasticity is negative, showing values between -0.99 and -1.33, never significantly different from one, if we consider different specifications without and with additional socio-economic factors. Income results associated to a positive elasticity, though lower than one. The role of other socio-economic territory-specific determinants is less relevant, with the exception of altitude. The relative high value of price elasticity is deemed consistent with the higher level of Regional water prices compared to the national average

    MAGIC observations provide compelling evidence of hadronic multi-TeV emission from the putative PeVatron SNR G106.3+2.7

    Get PDF
    Context. Certain types of supernova remnants (SNRs) in our Galaxy are assumed to be PeVatrons, capable of accelerating cosmic rays (CRs) to ∼ PeV energies. However, conclusive observational evidence for this has not yet been found. The SNR G106.3+2.7, detected at 1- 100 TeV energies by different γ-ray facilities, is one of the most promising PeVatron candidates. This SNR has a cometary shape, which can be divided into a head and a tail region with different physical conditions. However, in which region the 100 TeV emission is produced has not yet been identified because of the limited position accuracy and/or angular resolution of existing observational data. Additionally, it remains unclear as to whether the origin of the γ-ray emission is leptonic or hadronic. Aims. With the better angular resolution provided by new MAGIC data compared to earlier γ-ray datasets, we aim to reveal the acceleration site of PeV particles and the emission mechanism by resolving the SNR G106.3+2.7 with 0.1 resolution at TeV energies. Methods. We observed the SNR G106.3+2.7 using the MAGIC telescopes for 121.7 h in total - after quality cuts - between May 2017 and August 2019. The analysis energy threshold is ∼0.2 TeV, and the angular resolution is 0.07-0.1. We examined the γ-ray spectra of different parts of the emission, whilst benefitting from the unprecedented statistics and angular resolution at these energies provided by our new data. We also used measurements at other wavelengths such as radio, X-rays, GeV γ-rays, and 10 TeV γ-rays to model the emission mechanism precisely. Results. We detect extended γ-ray emission spatially coincident with the radio continuum emission at the head and tail of SNR G106.3+2.7. The fact that we detect a significant γ-ray emission with energies above 6.0 TeV from only the tail region suggests that the emissions above 10 TeV detected with air shower experiments (Milagro, HAWC, Tibet ASγ and LHAASO) are emitted only from the SNR tail. Under this assumption, the multi-wavelength spectrum of the head region can be explained with either hadronic or leptonic models, while the leptonic model for the tail region is in contradiction with the emission above 10 TeV and X-rays. In contrast, the hadronic model could reproduce the observed spectrum at the tail by assuming a proton spectrum with a cutoff energy of ∼1 PeV for that region. Such high-energy emission in this middle-aged SNR (4-10 kyr) can be explained by considering a scenario where protons escaping from the SNR in the past interact with surrounding dense gases at present. Conclusions. The γ-ray emission region detected with the MAGIC telescopes in the SNR G106.3+2.7 is extended and spatially coincident with the radio continuum morphology. The multi-wavelength spectrum of the emission from the tail region suggests proton acceleration up to ∼PeV, while the emission mechanism of the head region could either be hadronic or leptonic

    Multiwavelength variability and correlation studies of Mrk 421 during historically low X-ray and γ-ray activity in 2015-2016

    Get PDF
    We report a characterization of the multiband flux variability and correlations of the nearby (z = 0.031) blazar Markarian 421 (Mrk 421) using data from Metsahovi, Swift, Fermi-LAT, MAGIC, FACT, and other collaborations and instruments from 2014 November till 2016 June. Mrk 421 did not show any prominent flaring activity, but exhibited periods of historically low activity above 1 TeV (F->1 TeV 0.1 TeV) gamma-rays, which, despite the low activity, show a significant positive correlation with no time lag. The HRkeV and HRTeV show the harder-when-brighter trend observed in many blazars, but the trend flattens at the highest fluxes, which suggests a change in the processes dominating the blazar variability. Enlarging our data set with data from years 2007 to 2014, we measured a positive correlation between the optical and the GeV emission over a range of about 60 d centred at time lag zero, and a positive correlation between the optical/GeV and the radio emission over a range of about 60 d centred at a time lag of 43(-6)(+9) d. This observation is consistent with the radio-bright zone being located about 0.2 parsec downstream from the optical/GeV emission regions of the jet. The flux distributions are better described with a lognormal function in most of the energy bands probed, indicating that the variability in Mrk 421 is likely produced by a multiplicative process

    Broadband characterisation of the very intense TeV flares of the blazar 1ES 1959+650 in 2016

    Get PDF
    1ES 1959+650 is a bright TeV high-frequency-peaked BL Lac object exhibiting interesting features like "orphan" TeV flares and broad emission in the high-energy regime that are difficult to interpret using conventional one-zone Synchrotron Self-Compton (SSC) scenarios. We report the results from the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) observations in 2016 along with the multi-wavelength data from the Fermi Large Area Telescope (LAT) and Swift instruments. MAGIC observed 1ES 1959+650 with different emission levels in the very-high-energy (VHE, E> 100 GeV) gamma -ray band during 2016. In the long-term data, the X-ray spectrum becomes harder with increasing flux and a hint of a similar trend is also visible in the VHE band. An exceptionally high VHE flux reaching similar to 3 times the Crab Nebula flux was measured by MAGIC on the 13 and 14 of June, and 1 July 2016 (the highest flux observed since 2002). During these flares, the high-energy peak of the spectral energy distribution (SED) lies in the VHE domain and extends up to several TeV. The spectrum in the gamma -ray (both Fermi-LAT and VHE bands) and the X-ray bands are quite hard. On 13 June and 1 July 2016, the source showed rapid variations in the VHE flux within timescales of less than an hour. A simple one-zone SSC model can describe the data during the flares requiring moderate to large values of the Doppler factors (delta >= 30-60). Alternatively, the high-energy peak of the SED can be explained by a purely hadronic model attributed to proton-synchrotron radiation with jet power L-jet similar to 10(46) erg s(-1) and under high values of the magnetic field strength (similar to 100 G) and maximum proton energy (similar to few EeV). Mixed lepto-hadronic models require super-Eddington values of the jet power. We conclude that it is difficult to get detectable neutrino emission from the source during the extreme VHE flaring period of 2016

    Testing emission models on the extreme blazar 2WHSP J073326.7+515354 detected at very high energies with the MAGIC telescopes

    Get PDF
    Extreme high-energy-peaked BL Lac objects (EHBLs) are an emerging class of blazars. Their typical two-hump-structured spectral energy distribution (SED) peaks at higher energies with respect to conventional blazars. Multiwavelength (MWL) observations constrain their synchrotron peak in the medium to hard X-ray band. Their gamma-ray SED peaks above the GeV band, and in some objects it extends up to several TeV. Up to now, only a few EHBLs have been detected in the TeV gamma-ray range. In this paper, we report the detection of the EHBL 2WHSP J073320,7+515354, observed and detected during 2018 in TeV gamma rays with the MAGIC telescopes. The broad-band SED is studied within an MWL context, including an analysis of the Fermi-LAT data over 10 yr of observation and with simultaneous Swift-XRT, Swift-UVOT, and KVA data. Our analysis results in a set of spectral parameters that confirms the classification of the source as an EIME. In order to investigate the physical nature of this extreme emission, different theoretical frameworks were tested to model the broadband SED. The hard TeV spectrum of 2WHSP J073326.7+515354 sets the SED far from the energy equipartition regime in the standard one-zone leptonic scenario of blazar emission. Conversely, more complex models of the jet, represented by either a two-zone spine-layer model or a hadronic emission model, better represent the broad-hand SED

    Measurement of the extragalactic background light using MAGIC and Fermi-LAT gamma-ray observations of blazars up to z=1

    Get PDF
    We present a measurement of the extragalactic background light (EBL) based on a joint likelihood analysis of 32 gamma-ray spectra for 12 blazars in the redshift range z = 0.03-0.944, obtained by the MAGIC telescopes and Fermi-LAT. The EBL is the part of the diffuse extragalactic radiation spanning the ultraviolet, visible, and infrared bands. Major contributors to the EBL are the light emitted by stars through the history of the Universe, and the fraction of it that was absorbed by dust in galaxies and re-emitted at longer wavelengths. The EBL can be studied indirectly through its effect on very high energy photons that are emitted by cosmic sources and absorbed via gamma gamma interactions during their propagation across cosmological distances. We obtain estimates of the EBL density in good agreement with state-of-the-art models of the EBL production and evolution. The 1 sigma upper bounds, including systematic uncertainties, are between 13 per cent and 23 per cent above the nominal EBL density in the models. No anomaly in the expected transparency of the Universe to gamma-rays is observed in any range of optical depth. We also perform a wavelength-resolved EBL determination, which results in a hint of an excess of EBL in the 0.18-0.62 mu m range relative to the studied models, yet compatible with them within systematics

    New Hard-TeV Extreme Blazars Detected with the MAGIC Telescopes*

    Get PDF
    Extreme high-frequency-peaked BL Lac objects (EHBLs) are blazars that exhibit extremely energetic synchrotron emission. They also feature nonthermal gamma-ray emission whose peak lies in the very high-energy (VHE, E > 100 GeV) range, and in some sources exceeds 1 TeV: this is the case for hard-TeV EHBLs such as 1ES 0229+200. With the aim of increasing the EHBL population, 10 targets were observed with the MAGIC telescopes from 2010 to 2017, for a total of 265 hr of good-quality data. The data were complemented by coordinated Swift observations. The X-ray data analysis confirms that all but two sources are EHBLs. The sources show only a modest variability and a harder-when-brighter behavior, typical for this class of objects. At VHE gamma-rays, three new sources were detected and a hint of a signal was found for another new source. In each case, the intrinsic spectrum is compatible with the hypothesis of a hard-TeV nature of these EHBLs. The broadband spectral energy distributions (SEDs) of all sources are built and modeled in the framework of a single-zone, purely leptonic model. The VHE gamma-ray-detected sources were also interpreted with a spine-layer model and a proton synchrotron model. The three models provide a good description of the SEDs. However, the resulting parameters differ substantially in the three scenarios, in particular the magnetization parameter. This work presents the first mini catalog of VHE gamma-ray and multiwavelength observations of EHBLs

    Constraints on Gamma-Ray and Neutrino Emission from NGC 1068 with the MAGIC Telescopes

    Get PDF
    Starburst galaxies and star-forming active galactic nuclei are among the candidate sources thought to contribute appreciably to the extragalactic gamma-ray and neutrino backgrounds. NGC 1068 is the brightest of the star-forming galaxies found to emit gamma-rays from 0.1 to 50 GeV. Precise measurements of the high-energy spectrum are crucial to study the particle accelerators and probe the dominant emission mechanisms. We have carried out 125 hr of observations of NGC 1068 with the MAGIC telescopes in order to search for gamma-ray emission in the very-high-energy band. We did not detect significant gamma-ray emission, and set upper limits at the 95% confidence level to the gamma-ray flux above 200 GeV f < 5.1. x. 10(-13) cm(-2) s(-1). This limit improves previous constraints by about an order of magnitude and allows us to put tight constraints on the theoretical models for the gamma-ray emission. By combining the MAGIC observations with the Fermi-LAT spectrum we limit the parameter space (spectral slope, maximum energy) of the cosmic ray protons predicted by hadronuclear models for the gamma-ray emission, while we find that a model postulating leptonic emission from a semi-relativistic jet is fully consistent with the limits. We provide predictions for IceCube detection of the neutrino signal foreseen in the hadronic scenario. We predict a maximal IceCube neutrino event rate of 0.07 yr(-1)

    Unraveling the Complex Behavior of Mrk 421 with Simultaneous X-Ray and VHE Observations during an Extreme Flaring Activity in 2013 April*

    Get PDF
    We report on a multiband variability and correlation study of the TeV blazar Mrk 421 during an exceptional flaring activity observed from 2013 April 11 to 19. The study uses, among others, data from GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT), Swift, Nuclear Spectroscopic Telescope Array (NuSTAR), Fermi Large Area Telescope, Very Energetic Radiation Imaging Telescope Array System (VERITAS), and Major Atmospheric Gamma Imaging Cherenkov (MAGIC). The large blazar activity and the 43 hr of simultaneous NuSTAR and MAGIC/VERITAS observations permitted variability studies on 15 minute time bins over three X-ray bands (3-7 keV, 7-30 keV, and 30-80 keV) and three very-high-energy (VHE; >0.1 TeV) gamma-ray bands (0.2-0.4 TeV, 0.4-0.8 TeV, and >0.8 TeV). We detected substantial flux variations on multi-hour and sub-hour timescales in all of the X-ray and VHE gamma-ray bands. The characteristics of the sub-hour flux variations are essentially energy independent, while the multi-hour flux variations can have a strong dependence on the energy of the X-rays and the VHE gamma-rays. The three VHE bands and the three X-ray bands are positively correlated with no time lag, but the strength and characteristics of the correlation change substantially over time and across energy bands. Our findings favor multi-zone scenarios for explaining the achromatic/chromatic variability of the fast/slow components of the light curves, as well as the changes in the flux-flux correlation on day-long timescales. We interpret these results within a magnetic reconnection scenario, where the multi-hour flux variations are dominated by the combined emission from various plasmoids of different sizes and velocities, while the sub-hour flux variations are dominated by the emission from a single small plasmoid moving across the magnetic reconnection layer

    Monitoring of the radio galaxy M 87 during a low -emission state from m 2012 to 2015 with MAGIC

    Get PDF
    M 87 is one of the closest (z = 0.004 36) extragalactic sources emitting at very high energies (VHF, E > 100 GeV). The aim of this work is to locale the region of the VHF gamma-ray emission and to describe the observed broad-band spectral energy distribution (SED) during the low VHF gamma-ray state. The data from M 87 collected between 2012 and 2015 as part of a MAGIC monitoring programme are analysed and combined with multiwavelength data from Fermi-LAT, Chandra, HST, FVN, VLBA, and the Liverpool Telescope. The averaged VHE gamma-ray spectrum can be fitted from 100 GeV to 10 TeV with a simple power law with a photon index of (-2.41 0.07), while the integral flux above 300 GeV is (1.44 0.13) x 10-12 cm 2 s I. During the campaign between 2012 and 2015, M87 is generally found in a low-emission state at all observed wavelengths. The VIIE gamma-ray flux from the present 2012-2015M 87 campaign is consistent with a constant flux with some hint of variability ( 3 a) on a daily time-scale in 2013. The low-state gamma-ray emission likely originates from the same region as the flare-state emission. Given the broad-band SED, both a leptonic synchrotron self-Compton and a hybrid photohadronic model reproduce the available data well, even if the latter is preferred. We note, however, that the energy stored in the magnetic field in the leptonic scenario is very low, suggesting a matter-dominated emission region
    corecore