3,904 research outputs found

    Adsorbate surface diffusion: The role of incoherent tunneling in light particle motion

    Get PDF
    The role of incoherent tunneling in the diffusion of light atoms on surfaces is investigated. With this purpose, a Chudley-Elliot master equation constrained to nearest neighbors is considered within the Grabert-Weiss approach to quantum diffusion in periodic lattices. This model is applied to recent measurements of atomic H and D on Pt(111), rendering friction coefficients that are in the range of those available in the literature for other species of adsorbates. A simple extension of the model has also been considered to evaluate the relationship between coverage and tunneling, and therefore the feasibility of the approach. An increase of the tunneling rate has been observed as the surface coverage decreases.Comment: 7 pages, 2 figures; important reorganization of the work (including title changes

    Phonon lineshapes in atom-surface scattering

    Get PDF
    Phonon lineshapes in atom-surface scattering are obtained from a simple stochastic model based on the so-called Caldeira-Leggett Hamiltonian. In this single-bath model, the excited phonon resulting from a creation or annihilation event is coupled to a thermal bath consisting of an infinite number of harmonic oscillators, namely the bath phonons. The diagonalization of the corresponding Hamiltonian leads to a renormalization of the phonon frequencies in terms of the phonon friction or damping coefficient. Moreover, when there are adsorbates on the surface, this single-bath model can be extended to a two-bath model accounting for the effect induced by the adsorbates on the phonon lineshapes as well as their corresponding lineshapes.Comment: 14 pages, 2 figure

    A generalized Chudley-Elliott vibration-jump model in activated atom surface diffusion

    Get PDF
    Here the authors provide a generalized Chudley-Elliott expression for activated atom surface diffusion which takes into account the coupling between both low-frequency vibrational motion (namely, the frustrated translational modes) and diffusion. This expression is derived within the Gaussian approximation framework for the intermediate scattering function at low coverage. Moreover, inelastic contributions (arising from creation and annihilation processes) to the full width at half maximum of the quasi-elastic peak are also obtained.Comment: (5 pages, 2 figures; revised version

    Stochastic theory of lineshape broadening in quasielastic He atom scattering with interacting adsorbates

    Get PDF
    The activated surface diffusion of interacting adsorbates is described in terms of the so-called interacting single adsorbate approximation, which is applied to the diffusion of Na atoms on Cu(001) for coverages up to 20% in quasielastic He atom scattering experiments. This approximation essentially consists of solving the standard Langevin equation with two noise sources and frictions: a Gaussian white noise accounting for the friction with the substrate, and a white shot noise characterized by a collisional friction simulating the adsorbate-adsorbate collisions. The broadenings undergone by the quasielastic peak are found to be in very good agreement with the experimental data reported at two surface temperatures 200 and 300 K.Comment: 6 pages, 3 figure

    Linear response theory of activated surface diffusion with interacting adsorbates

    Get PDF
    Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(001) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.Comment: 40 pages, 4 figure

    Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy

    Full text link
    [EN] Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy and entails high costs for health systems. Currently, no reliable labor proximity prediction techniques are available for clinical use. Regular checks by uterine electrohysterogram (EHG) for predicting preterm labor have been widely studied. The aim of the present study was to assess the feasibility of predicting labor with a 7- and 14-day time horizon in TPL women, who may be under tocolytic treatment, using EHG and/or obstetric data. Based on 140 EHG recordings, artificial neural networks were used to develop prediction models. Non-linear EHG parameters were found to be more reliable than linear for differentiating labor in under and over 7/14 days. Using EHG and obstetric data, the <7- and <14-day labor prediction models achieved an AUC in the test group of 87.1 +/- 4.3% and 76.2 +/- 5.8%, respectively. These results suggest that EHG can be reliable for predicting imminent labor in TPL women, regardless of the tocolytic therapy stage. This paves the way for the development of diagnostic tools to help obstetricians make better decisions on treatments, hospital stays and admitting TPL women, and can therefore reduce costs and improve maternal and fetal wellbeing.This work was supported by the Spanish Ministry of Economy and Competitiveness, the European Regional Development Fund (MCIU/AEI/FEDER, UE RTI2018-094449-A-I00-AR) and by the Generalitat Valenciana (AICO/2019/220).Mas-Cabo, J.; Prats-Boluda, G.; Garcia-Casado, J.; Alberola Rubio, J.; Monfort-Ortiz, R.; Martinez-Saez, C.; Perales, A.... (2020). Electrohysterogram for ANN-Based Prediction of Imminent Labor in Women with Threatened Preterm Labor Undergoing Tocolytic Therapy. Sensors. 20(9):1-16. https://doi.org/10.3390/s20092681S116209Beck, S., Wojdyla, D., Say, L., Pilar Bertran, A., Meraldi, M., Harris Requejo, J., … Van Look, P. (2010). The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bulletin of the World Health Organization, 88(1), 31-38. doi:10.2471/blt.08.062554Zeitlin, J., Szamotulska, K., Drewniak, N., Mohangoo, A., Chalmers, J., … Sakkeus, L. (2013). Preterm birth time trends in Europe: a study of 19 countries. BJOG: An International Journal of Obstetrics & Gynaecology, 120(11), 1356-1365. doi:10.1111/1471-0528.12281Goldenberg, R. L., Culhane, J. F., Iams, J. D., & Romero, R. (2008). Epidemiology and causes of preterm birth. The Lancet, 371(9606), 75-84. doi:10.1016/s0140-6736(08)60074-4Petrou, S. (2005). The economic consequences of preterm birth duringthe first 10 years of life. BJOG: An International Journal of Obstetrics & Gynaecology, 112, 10-15. doi:10.1111/j.1471-0528.2005.00577.xLucovnik, M., Chambliss, L. R., & Garfield, R. E. (2013). Costs of unnecessary admissions and treatments for «threatened preterm labor». American Journal of Obstetrics and Gynecology, 209(3), 217.e1-217.e3. doi:10.1016/j.ajog.2013.06.046Haas, D., Benjamin, T., Sawyer, R., & Quinney, S. (2014). Short-term tocolytics for preterm delivery &ndash; current perspectives. International Journal of Women’s Health, 343. doi:10.2147/ijwh.s44048Euliano, T. Y., Nguyen, M. T., Darmanjian, S., McGorray, S. P., Euliano, N., Onkala, A., & Gregg, A. R. (2013). Monitoring uterine activity during labor: a comparison of 3 methods. American Journal of Obstetrics and Gynecology, 208(1), 66.e1-66.e6. doi:10.1016/j.ajog.2012.10.873Devedeux, D., Marque, C., Mansour, S., Germain, G., & Duchêne, J. (1993). Uterine electromyography: A critical review. American Journal of Obstetrics and Gynecology, 169(6), 1636-1653. doi:10.1016/0002-9378(93)90456-sChkeir, A., Fleury, M.-J., Karlsson, B., Hassan, M., & Marque, C. (2013). Patterns of electrical activity synchronization in the pregnant rat uterus. BioMedicine, 3(3), 140-144. doi:10.1016/j.biomed.2013.04.007Fele-Žorž, G., Kavšek, G., Novak-Antolič, Ž., & Jager, F. (2008). A comparison of various linear and non-linear signal processing techniques to separate uterine EMG records of term and pre-term delivery groups. Medical & Biological Engineering & Computing, 46(9), 911-922. doi:10.1007/s11517-008-0350-yHoroba, K., Jezewski, J., Matonia, A., Wrobel, J., Czabanski, R., & Jezewski, M. (2016). Early predicting a risk of preterm labour by analysis of antepartum electrohysterograhic signals. Biocybernetics and Biomedical Engineering, 36(4), 574-583. doi:10.1016/j.bbe.2016.06.004Vinken, M. P. G. C., Rabotti, C., Mischi, M., & Oei, S. G. (2009). Accuracy of Frequency-Related Parameters of the Electrohysterogram for Predicting Preterm Delivery. Obstetrical & Gynecological Survey, 64(8), 529-541. doi:10.1097/ogx.0b013e3181a8c6b1Vrhovec, J., Macek-Lebar, A., & Rudel, D. (s. f.). Evaluating Uterine Electrohysterogram with Entropy. IFMBE Proceedings, 144-147. doi:10.1007/978-3-540-73044-6_36Diab, A., Hassan, M., Marque, C., & Karlsson, B. (2014). Performance analysis of four nonlinearity analysis methods using a model with variable complexity and application to uterine EMG signals. Medical Engineering & Physics, 36(6), 761-767. doi:10.1016/j.medengphy.2014.01.009Lemancewicz, A., Borowska, M., Kuć, P., Jasińska, E., Laudański, P., Laudański, T., & Oczeretko, E. (2016). Early diagnosis of threatened premature labor by electrohysterographic recordings – The use of digital signal processing. Biocybernetics and Biomedical Engineering, 36(1), 302-307. doi:10.1016/j.bbe.2015.11.005Hassan, M., Terrien, J., Marque, C., & Karlsson, B. (2011). Comparison between approximate entropy, correntropy and time reversibility: Application to uterine electromyogram signals. Medical Engineering & Physics, 33(8), 980-986. doi:10.1016/j.medengphy.2011.03.010Fergus, P., Idowu, I., Hussain, A., & Dobbins, C. (2016). Advanced artificial neural network classification for detecting preterm births using EHG records. Neurocomputing, 188, 42-49. doi:10.1016/j.neucom.2015.01.107Acharya, U. R., Sudarshan, V. K., Rong, S. Q., Tan, Z., Lim, C. M., Koh, J. E., … Bhandary, S. V. (2017). Automated detection of premature delivery using empirical mode and wavelet packet decomposition techniques with uterine electromyogram signals. Computers in Biology and Medicine, 85, 33-42. doi:10.1016/j.compbiomed.2017.04.013Fergus, P., Cheung, P., Hussain, A., Al-Jumeily, D., Dobbins, C., & Iram, S. (2013). Prediction of Preterm Deliveries from EHG Signals Using Machine Learning. PLoS ONE, 8(10), e77154. doi:10.1371/journal.pone.0077154Ren, P., Yao, S., Li, J., Valdes-Sosa, P. A., & Kendrick, K. M. (2015). Improved Prediction of Preterm Delivery Using Empirical Mode Decomposition Analysis of Uterine Electromyography Signals. PLOS ONE, 10(7), e0132116. doi:10.1371/journal.pone.0132116Degbedzui, D. K., & Yüksel, M. E. (2020). Accurate diagnosis of term–preterm births by spectral analysis of electrohysterography signals. Computers in Biology and Medicine, 119, 103677. doi:10.1016/j.compbiomed.2020.103677Borowska, M., Brzozowska, E., Kuć, P., Oczeretko, E., Mosdorf, R., & Laudański, P. (2018). Identification of preterm birth based on RQA analysis of electrohysterograms. Computer Methods and Programs in Biomedicine, 153, 227-236. doi:10.1016/j.cmpb.2017.10.018Vinken, M. P. G. C., Rabotti, C., Mischi, M., van Laar, J. O. E. H., & Oei, S. G. (2010). Nifedipine-Induced Changes in the Electrohysterogram of Preterm Contractions: Feasibility in Clinical Practice. Obstetrics and Gynecology International, 2010, 1-8. doi:10.1155/2010/325635Mas-Cabo, J., Prats-Boluda, G., Perales, A., Garcia-Casado, J., Alberola-Rubio, J., & Ye-Lin, Y. (2018). Uterine electromyography for discrimination of labor imminence in women with threatened preterm labor under tocolytic treatment. Medical & Biological Engineering & Computing, 57(2), 401-411. doi:10.1007/s11517-018-1888-yBradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159. doi:10.1016/s0031-3203(96)00142-2Alexandersson, A., Steingrimsdottir, T., Terrien, J., Marque, C., & Karlsson, B. (2015). The Icelandic 16-electrode electrohysterogram database. Scientific Data, 2(1). doi:10.1038/sdata.2015.17Maner, W. (2003). Predicting term and preterm delivery with transabdominal uterine electromyography. Obstetrics & Gynecology, 101(6), 1254-1260. doi:10.1016/s0029-7844(03)00341-7Maner, W. L., & Garfield, R. E. (2007). Identification of Human Term and Preterm Labor using Artificial Neural Networks on Uterine Electromyography Data. Annals of Biomedical Engineering, 35(3), 465-473. doi:10.1007/s10439-006-9248-8Mas-Cabo, J., Prats-Boluda, G., Garcia-Casado, J., Alberola-Rubio, J., Perales, A., & Ye-Lin, Y. (2019). Design and Assessment of a Robust and Generalizable ANN-Based Classifier for the Prediction of Premature Birth by means of Multichannel Electrohysterographic Records. Journal of Sensors, 2019, 1-13. doi:10.1155/2019/5373810Terrien, J., Marque, C., & Karlsson, B. (2007). Spectral characterization of human EHG frequency components based on the extraction and reconstruction of the ridges in the scalogram. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2007.4352680Rooijakkers, M. J., Rabotti, C., Oei, S. G., Aarts, R. M., & Mischi, M. (2014). Low-complexity intrauterine pressure estimation using the Teager energy operator on electrohysterographic recordings. Physiological Measurement, 35(7), 1215-1228. doi:10.1088/0967-3334/35/7/1215Ahmed, M., Chanwimalueang, T., Thayyil, S., & Mandic, D. (2016). A Multivariate Multiscale Fuzzy Entropy Algorithm with Application to Uterine EMG Complexity Analysis. Entropy, 19(1), 2. doi:10.3390/e19010002Karmakar, C. K., Khandoker, A. H., Gubbi, J., & Palaniswami, M. (2009). Complex Correlation Measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8(1), 17. doi:10.1186/1475-925x-8-17Roy, B., & Ghatak, S. (2013). Nonlinear Methods to Assess Changes in Heart Rate Variability in Type 2 Diabetic Patients. Arquivos Brasileiros de Cardiologia. doi:10.5935/abc.20130181Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. doi:10.1613/jair.953Smrdel, A., & Jager, F. (2015). Separating sets of term and pre-term uterine EMG records. Physiological Measurement, 36(2), 341-355. doi:10.1088/0967-3334/36/2/341Kl. Comparison between Using Linear and Non-linear Features to Classify Uterine Electromyography Signals of Term and Preterm Deliveries. (2013). 2013 30th National Radio Science Conference (NRSC). doi:10.1109/nrsc.2013.6587953Aditya, S., & Tibarewala, D. N. (2012). Comparing ANN, LDA, QDA, KNN and SVM algorithms in classifying relaxed and stressful mental state from two-channel prefrontal EEG data. International Journal of Artificial Intelligence and Soft Computing, 3(2), 143. doi:10.1504/ijaisc.2012.049010Li, Q., Rajagopalan, C., & Clifford, G. D. (2014). A machine learning approach to multi-level ECG signal quality classification. Computer Methods and Programs in Biomedicine, 117(3), 435-447. doi:10.1016/j.cmpb.2014.09.002Li, Z., Zhang, Q., & Zhao, X. (2017). Performance analysis of K-nearest neighbor, support vector machine, and artificial neural network classifiers for driver drowsiness detection with different road geometries. International Journal of Distributed Sensor Networks, 13(9), 155014771773339. doi:10.1177/1550147717733391Murthy, H. S. N., & Meenakshi, D. M. (2015). ANN, SVM and KNN Classifiers for Prognosis of Cardiac Ischemia- A Comparison. Bonfring International Journal of Research in Communication Engineering, 5(2), 07-11. doi:10.9756/bijrce.8030Ren, J. (2012). ANN vs. SVM: Which one performs better in classification of MCCs in mammogram imaging. Knowledge-Based Systems, 26, 144-153. doi:10.1016/j.knosys.2011.07.016Zhang, G., Eddy Patuwo, B., & Y. Hu, M. (1998). Forecasting with artificial neural networks: International Journal of Forecasting, 14(1), 35-62. doi:10.1016/s0169-2070(97)00044-7Lawrence, S., & Giles, C. L. (2000). Overfitting and neural networks: conjugate gradient and backpropagation. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium. doi:10.1109/ijcnn.2000.857823Diab, A., Hassan, M., Boudaoud, S., Marque, C., & Karlsson, B. (2013). Nonlinear estimation of coupling and directionality between signals: Application to uterine EMG propagation. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2013.6610513Most, O., Langer, O., Kerner, R., Ben David, G., & Calderon, I. (2008). Can myometrial electrical activity identify patients in preterm labor? American Journal of Obstetrics and Gynecology, 199(4), 378.e1-378.e6. doi:10.1016/j.ajog.2008.08.003Mas-Cabo, J., Prats-Boluda, G., Ye-Lin, Y., Alberola-Rubio, J., Perales, A., & Garcia-Casado, J. (2019). Characterization of the effects of Atosiban on uterine electromyograms recorded in women with threatened preterm labor. Biomedical Signal Processing and Control, 52, 198-205. doi:10.1016/j.bspc.2019.04.001You, J., Kim, Y., Seok, W., Lee, S., Sim, D., Park, K. S., & Park, C. (2019). Multivariate Time–Frequency Analysis of Electrohysterogram for Classification of Term and Preterm Labor. Journal of Electrical Engineering & Technology, 14(2), 897-916. doi:10.1007/s42835-019-00118-9Schuit, E., Scheepers, H., Bloemenkamp, K., Bolte, A., Duvekot, H., … van Eyck, J. (2015). Predictive Factors for Delivery within 7 Days after Successful 48-Hour Treatment of Threatened Preterm Labor. American Journal of Perinatology Reports, 05(02), e141-e149. doi:10.1055/s-0035-1552930Liao, J. B., Buhimschi, C. S., & Norwitz, E. R. (2005). Normal Labor: Mechanism and Duration. Obstetrics and Gynecology Clinics of North America, 32(2), 145-164. doi:10.1016/j.ogc.2005.01.001Ye-Lin, Y., Garcia-Casado, J., Prats-Boluda, G., Alberola-Rubio, J., & Perales, A. (2014). Automatic Identification of Motion Artifacts in EHG Recording for Robust Analysis of Uterine Contractions. Computational and Mathematical Methods in Medicine, 2014, 1-11. doi:10.1155/2014/47078

    Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity

    Full text link
    Surface recording of electroenterogram (EEnG) is a non-invasive method for monitoring intestinal myoelectrical activity. However, surface EEnG is seriously affected by a variety of interferences: cardiac activity, respiration, very low frequency components and movement artefacts. The aim of this study is to eliminate respiratory interference and very low frequency components from external EEnG recording by means of empirical mode decomposition (EMD), so as to obtain more robust indicators of intestinal pacemaker activity from external EEnG signal. For this purpose, 11 recording sessions were performed in an animal model under fasting conditions and in each individual session the myoelectrical signal was recorded simultaneously in the intestinal serosa and the external abdominal surface in physiological states. Various parameters have been proposed for evaluating the efficacy of the method in reducing interferences: the signal-to-interference ratio (S/I ratio), attenuation of the target and interference signals, the normal slow wave percentage and the stability of the dominant frequency (DF) of the signal. The results show that the S/I ratio of the processed signals is significantly greater than the original values (9.66±4.44 dB vs. 1.23±5.13 dB), while the target signal was barely attenuated (-0.63±1.02 dB). The application of the EMD method also increased the percentage of the normal slow wave to 100% in each individual session and enabled the stability of the DF of the external signal to be increased considerably. Furthermore, the variation coefficient of the DF derived from the external processed signals is comparable to the coefficient obtained using internal recordings. Therefore the EMD method could be a very useful tool to improve the quality of external EEnG recording in the low frequency range, and therefore to obtain more robust indicators of the intestinal pacemaker activity from non invasive EEnG recordingsThe authors would like to thank D Alvarez-Martinez, Dr C Vila and the Veterinary Unit of the Research Centre of 'La Fe' University Hospital (Valencia, Spain), where the surgical interventions and recording sessions were carried out, and the R+D+I Linguistic Assistance Office at the UPV for their help in revising this paper. This research study was sponsored by the Ministerio de Ciencia y Tecnologia de Espana (TEC2007-64278) and by the Universidad Politecnica de Valencia, as part of a UPV research and development Grant Programme.Ye Lin, Y.; Garcia Casado, FJ.; Prats Boluda, G.; Ponce, JL.; Martínez De Juan, JL. (2009). Enhancement of the non-invasive electroenterogram to identify intestinal pacemaker activity. PHYSIOLOGICAL MEASUREMENT. 30(9):885-902. https://doi.org/10.1088/0967-3334/30/9/002S885902309Amaris, M. A., Sanmiguel, C. P., Sadowski, D. C., Bowes, K. L., & Mintchev, M. P. (2002). Digestive Diseases and Sciences, 47(11), 2480-2485. doi:10.1023/a:1020503908304Bass, P., & Wiley, J. N. (1965). Electrical and extraluminal contractile-force activity of the duodenum of the dog. The American Journal of Digestive Diseases, 10(3), 183-200. doi:10.1007/bf02233747Bradshaw, L. A., Allos, S. H., Wikswo, J. P., & Richards, W. O. (1997). Correlation and comparison of magnetic and electric detection of small intestinal electrical activity. American Journal of Physiology-Gastrointestinal and Liver Physiology, 272(5), G1159-G1167. doi:10.1152/ajpgi.1997.272.5.g1159Camilleri, M., Hasler, W. L., Parkman, H. P., Quigley, E. M. M., & Soffer, E. (1998). Measurement of gastrointestinal motility in the GI laboratory. Gastroenterology, 115(3), 747-762. doi:10.1016/s0016-5085(98)70155-6Chen, J. D. Z., & Lin, Z. (1993). Adaptive cancellation of the respiratory artifact in surface recording of small intestinal electrical activity. Computers in Biology and Medicine, 23(6), 497-509. doi:10.1016/0010-4825(93)90097-kChen, J., & McCallum, R. W. (1991). Electrogastrography: measuremnt, analysis and prospective applications. Medical & Biological Engineering & Computing, 29(4), 339-350. doi:10.1007/bf02441653Chen, J. D. Z., Schirmer, B. D., & McCallum, R. W. (1993). Measurement of electrical activity of the human small intestine using surface electrodes. IEEE Transactions on Biomedical Engineering, 40(6), 598-602. doi:10.1109/10.237682Garcia-Casado, J., Martinez-de-Juan, J. L., & Ponce, J. L. (2005). Noninvasive Measurement and Analysis of Intestinal Myoelectrical Activity Using Surface Electrodes. IEEE Transactions on Biomedical Engineering, 52(6), 983-991. doi:10.1109/tbme.2005.846730Gordon, A. D. (1987). A Review of Hierarchical Classification. Journal of the Royal Statistical Society. Series A (General), 150(2), 119. doi:10.2307/2981629Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., … Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. doi:10.1098/rspa.1998.0193Irimia, A., & Bradshaw, L. A. (2005). Artifact reduction in magnetogastrography using fast independent component analysis. Physiological Measurement, 26(6), 1059-1073. doi:10.1088/0967-3334/26/6/015Lammers, W. J. E. P., & Stephen, B. (2008). Origin and propagation of individual slow waves along the intact feline small intestine. Experimental Physiology, 93(3), 334-346. doi:10.1113/expphysiol.2007.039180Liang, H. (2001). Adaptive independent component analysis of multichannel electrogastrograms. Medical Engineering & Physics, 23(2), 91-97. doi:10.1016/s1350-4533(01)00019-4Liang, J., Cheung, J. Y., & Chen, J. D. Z. (1997). Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks. Annals of Biomedical Engineering, 25(5), 850-857. doi:10.1007/bf02684169Liang, H., Lin, Z., & McCallum, R. W. (2000). Artifact reduction in electrogastrogram based on empirical mode decomposition method. Medical & Biological Engineering & Computing, 38(1), 35-41. doi:10.1007/bf02344686Zhi-Yue Lin, Chen, Z., & Jian De. (1994). Time-frequency representation of the electrogastrogram-application of the exponential distribution. IEEE Transactions on Biomedical Engineering, 41(3), 267-275. doi:10.1109/10.284945Lin, Z. Y., & Chen, J. D. Z. (1994). Recursive running DCT algorithm and its application in adaptive filtering of surface electrical recording of small intestine. Medical & Biological Engineering & Computing, 32(3), 317-322. doi:10.1007/bf02512529Lin, Z., & Chen, J. D. Z. (1995). Comparison of three running spectral analysis methods for electrogastrographic signals. Medical & Biological Engineering & Computing, 33(4), 596-604. doi:10.1007/bf02522520Maestri, R., Pinna, G. D., Porta, A., Balocchi, R., Sassi, R., Signorini, M. G., … Raczak, G. (2007). Assessing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable? Physiological Measurement, 28(9), 1067-1077. doi:10.1088/0967-3334/28/9/008Martinez-de-Juan, J. ., Saiz, J., Meseguer, M., & Ponce, J. . (2000). Small bowel motility: relationship between smooth muscle contraction and electroenterogram signal. Medical Engineering & Physics, 22(3), 189-199. doi:10.1016/s1350-4533(00)00032-1Mintchev, M. P., Kingma, Y. J., & Bowes, K. L. (1993). Accuracy of cutaneous recordings of gastric electrical activity. Gastroenterology, 104(5), 1273-1280. doi:10.1016/0016-5085(93)90334-9Prats-Boluda, G., Garcia-Casado, J., Martinez-de-Juan, J. L., & Ponce, J. L. (2007). Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans. Physiological Measurement, 28(9), 1115-1133. doi:10.1088/0967-3334/28/9/012Quigley, E. M. M. (1996). GASTRIC AND SMALL INTESTINAL MOTILITY IN HEALTH AND DISEASE. Gastroenterology Clinics of North America, 25(1), 113-145. doi:10.1016/s0889-8553(05)70368-xSeidel, S. A., Bradshaw, L. A., Ladipo, J. K., Wikswo, J. P., & Richards, W. O. (1999). Noninvasive detection of ischemic bowel. Journal of Vascular Surgery, 30(2), 309-319. doi:10.1016/s0741-5214(99)70142-4Tomomasa, T., Morikawa, A., Sandler, R. H., Mansy, H. A., Koneko, H., Masahiko, T., … Itoh, Z. (1999). Gastrointestinal Sounds and Migrating Motor Complex in Fasted Humans. American Journal of Gastroenterology, 94(2), 374-381. doi:10.1111/j.1572-0241.1999.00862.xWang, Z. S., Cheung, J. Y., & Chen, J. D. Z. (1999). Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network. Medical & Biological Engineering & Computing, 37(1), 80-86. doi:10.1007/bf0251327
    corecore