62,018 research outputs found

    Spin and occupation number entanglement of Dirac fields for non-inertial observers

    Get PDF
    We investigate the Unruh effect on entanglement taking into account the spin degree of freedom of the Dirac field. We analyze spin Bell states in this setting, obtaining their entanglement dependance on the acceleration of one of the partners. Then, we consider simple analogs to the occupation number entangled state |00>+|11>, but with spin quantum numbers for |11> showing that, despite their apparent similitude, while the spinless case is always qubit x qubit, for the spin case acceleration produces a qubit x qu4it state. We also introduce a procedure to consistently erase the spin information from our setting preserving occupation numbers. We show how the maximally entangled state for occupation number emerges from our setting, we also analyze its entanglement dependance on acceleration, obtaining a greater entanglement degradation than in the spinless case.Comment: RevTex, 11 pages, 3 figures. The replacement is due to some minor misprints correction

    Nonlinear dynamic analysis of shells of revolution by matrix displacement method

    Get PDF
    Nonlinear dynamic analysis of shells of revolution by matrix displacement metho

    Geometrical estimators as a test of Gaussianity in the CMB

    Get PDF
    We investigate the power of geometrical estimators on detecting non-Gaussianity in the cosmic microwave background. In particular the number, eccentricity and Gaussian curvature of excursion sets above (and below) a threshold are studied. We compare their different performance when applied to non-Gaussian simulated maps of small patches of the sky, which take into account the angular resolution and instrumental noise of the Planck satellite. These non-Gaussian simulations are obtained as perturbations of a Gaussian field in two different ways which introduce a small level of skewness or kurtosis in the distribution. A comparison with a classical estimator, the genus, is also shown. We find that the Gaussian curvature is the best of our estimators in all the considered cases. Therefore we propose the use of this quantity as a particularly useful test to look for non-Gaussianity in the CMB.Comment: 9 pages, 6 postscript figures, submitted to MNRA

    Quasar-galaxy associations revisited

    Get PDF
    Gravitational lensing predicts an enhancement of the density of bright, distant QSOs around foreground galaxies. We measure this QSO-galaxy correlation w_qg for two complete samples of radio-loud quasars, the southern 1Jy and Half-Jansky samples. The existence of a positive correlation between z~1 quasars and z~0.15 galaxies is confirmed at a p=99.0% significance level (>99.9%) if previous measurements on the northern hemisphere are included). A comparison with the results obtained for incomplete quasar catalogs (e.g. the Veron-Cetty and Veron compilation) suggests the existence of an `identification bias', which spuriously increases the estimated amplitude of the quasar-galaxy correlation for incomplete samples. This effect may explain many of the surprisingly strong quasar-galaxy associations found in the literature. Nevertheless, the value of w_qg that we measure in our complete catalogs is still considerably higher than the predictions from weak lensing. We consider two effects which could help to explain this discrepancy: galactic dust extinction and strong lensing.Comment: 9 pages, 6 figures, MNRAS accepte
    corecore