7 research outputs found

    Carbon Nanotubes Enhanced The Lead Toxicity On The Freshwater Fish

    Get PDF
    Carbon nanotubes are promising nanostructures for many applications in materials industry and biotechnology. However, it is mandatory to evaluate their toxicity and environmental implications. We evaluated nitric acid treated multiwalled carbon nanotubes (HNO3-MWCNT) toxicity in Nile tilapia (Oreochromis niloticus) and also the lead (Pb) toxicity modulation after the nanotube interaction. Industrial grade multiwalled carbon nanotubes [Ctube 100, CNT Co. Ltd] were treated with 9M HNO3 for 12h at 150°C to generate oxygenated groups on the nanotube surface, to improve water dispersion and heavy metal interaction. The HNO3-treated multiwalled carbon nanotubes were physico-chemically characterized by several techniques [e.g. TEM, FE-SEM, TGA, ζ-potential and Raman spectroscopy]. HNO3-MWCNT did not show toxicity on Nile tilapia when the concentration ranged from 0.1 to 3.0 mg/L, and the maximum exposure time was 96h. After 24, 48, 72 and 96h the LC50 values of Pb were 1.65, 1.32, 1.10 and 0.99 mg/L, respectively. To evaluate the Pb-nanotube interaction influence on the ecotoxicity, we submitted the Nile tilapia to different concentrations of Pb mixed with a non-toxic concentration of HNO3-MWCNT (1.0 mg/L). After 24, 48, 72, 96 h the LC50 values of Pb plus nanotubes were: 0.32, 0.25, 0.20, 0.18 mg/L, respectively. These values showed a synergistic effect after Pb-nanotube interaction since Pb toxicity increased over five times. X-ray energy dispersive spectroscopy (EDS) was used to confirm lead adsorption on the carbon nanotube oxidized surface. The exposure of Nile tilapia to Pb plus HNO3-MWCNT caused both oxygen consumption and ammonium excretion decrease, when compared to the control. Finally, our results show that carbon nanotubes interact with classical pollutants drawing attention to the environmental implications. © IOP Publishing Ltd 2013.4291Stéfani, D., Paula, A.J., Vaz, B.G., Silva, R.A., Andrade, N.F., Justo, G.Z., Ferreira, C.V., Alves, O.L., Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes (2011) J. Hazardous Materials, 189 (1-2), pp. 391-396. , 10.1016/j.jhazmat.2011.02.050 0304-3894Datsyuk, V., Kalyva, M., Papagelis, K., Parthenios, J., Tasis, D., Siokou, A., Kallitsis, I., Galiotis, C., Chemical oxidation of multiwalled carbon nanotubes (2008) Carbon, 46 (6), pp. 833-840. , 10.1016/j.carbon.2008.02.012 0008-6223Marques, R.R.N., MacHado, B.F., Faria, J.L., Silva, A.M.T., Controlled generation of oxygen functionalities on the surface of Single-Walled Carbon Nanotubes by HNO3 hydrothermal oxidation Carbon, 48 (5), pp. 1515-1523Wu, W.H., Chen, W., Lin, D.H., Yang, K., Influence of Surface Oxidation of Multiwalled Carbon Nanotubes on the Adsorption Affinity and Capacity of Polar and Nonpolar Organic Compounds in Aqueous Phase (2012) Environmental Sci. Technol., 46 (10), pp. 5446-5454. , 10.1021/es3004848 0013-936XDai, W., Liu, S.X., Fu, L.L., Du, H.H., Xu, Z.R., Lead (Pb) accumulation, oxidative stress and DNA damage induced by dietary Pb in tilapia (Oreochromis niloticus) (2012) Aquaculture Research, 43 (2), pp. 208-214. , 10.1111/j.1365-2109.2011.02817.x 1355-557XUmbuzeiro, G.A., Coluci, V.R., Honorio, J.G., Giro, R., Moraes, D.A., Lage, A.S.G., Mazzei, J.L., Alves, O.L., Understanding the interaction of multi-walled carbon nanotubes with mutagenic organic pollutants using computational modeling and biological experiments (2011) TRAC Trends Analytical Chem., 30 (3), pp. 437-446. , 10.1016/j.trac.2010.11.013 0165-9936Navarro, R.D., Navarro, F.K.S.P., Ribeiro, O.P., Ferreira, W.M., Pereira, M.M., Seixas, J.T., Quality of polyunsaturated fatty acids in Nile tilapias (Oreochromis niloticus) fed with vitamin e supplementation (2012) Food Chem., 134 (1), pp. 215-218. , 10.1016/j.foodchem.2012.02.097 0308-8146Kaya, H., Akbulut, M., Celik, E.S., Yilmaz, S., Aydin, F., Duysak, M., Effects of lead nitrate on haematological and immunological parameters in the tilapia (Oreochromis mossambicus, L. 1758) (2011) Toxicology Lett., 205, pp. 128-S132. , 10.1016/j.toxlet.2011.05.457 0378-4274Rashed, M.N., Cadmium and lead levels in fish (Tilapia nilotica) tissues as biological indicator for lake water pollution (2011) Environmental Monitoring Assessment, 68 (1), pp. 75-89. , 10.1023/A:1010739023662 0167-6369Wang, X., Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis (2011) Human Experimental Toxicology, 30 (8), pp. 1009-1021. , 10.1177/0960327110385958 0960-3271Li, Y.H., Wang, S.G., Wei, J.Q., Zhang, X.F., Xu, C.L., Luan, Z.K., Wu, D.H., Wei, B.Q., Lead adsorption on carbon nanotubes (2002) Chem. Phys. Lett., 357 (3-4), pp. 263-266. , 10.1016/S0009-2614(02)00502-X 0009-2614Yu, X.Y., Luo, T., Zhang, Y.X., Jia, Y., Zhu, B.J., Fu, X.C., Liu, J.H., Huang, X.J., Adsorption of Lead(II) on O-2-Plasma-Oxidized Multiwalled Carbon Nanotubes: Thermodynamics, Kinetics, and Desorption (2011) ACS Appl. Materials Interfaces, 3 (7), pp. 2585-2593. , 10.1021/am2004202 1944-8244Barbieri, E., Paes, E.T., The use of oxygen consumption and ammonium excretion to evaluate the toxicity of cadmium on Farfantepenaeus paulensis with respect to salinity (2011) Chemosphere, 84 (1), pp. 9-16. , 10.1016/j.chemosphere.2011.02.092 0045-653

    Insecticidal Effect Of Labramin, A Lectinlike Protein Isolated From Seeds Of The Beach Apricot Tree, Labramia Bojeri, On The Mediterranean Flour Moth, Ephestia Kuehniella

    Get PDF
    The objective of this work was to study the insecticidal effect of labramin, a protein that shows lectinlike properties. Labramin was isolated from seeds of the Beach Apricot tree, Labramia bojeri A. DC ex Dubard (Ericales: Sapotaceae), and assessed against the development of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), an important pest of stored products such as corn, wheat, rice, and flour. Results showed that labramin caused 90% larval mortality when incorporated in an artificial diet at a level of 1% (w/w). The presence of 0.25% labramin in the diet affected the larval and pupal developmental periods and the percentage of emerging adults. Treatments resulted in elevated levels of trypsin activity in midgut and fecal materials, indicating that labramin may have affected enzymeregulatory mechanisms by perturbing peritrophic membranes in the midgut of is. kuehniella larvae. The results of dietary experiments with E. kuehniella larvae showed a reduced efficiency for the conversion of ingested and digested food, and an increase in approximate digestibility and metabolic cost. These findings suggest that labramin may hold promise as a control agent to engineer crop plants for insect resistance. © This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.12Ayvaz, A., Osman, S., Salih, K., Ismet, O., Insecticidal activity of the essential oils from different plants against three stored-product insects (2008) Journal of Insect Science, 10, p. 21. , insectscience.org/10.21Boobis, A.R., Ossendorp, B.C., Banasiak, U., Hamey, P.Y., Sebestyen, I., Moretto, A., Cumulative risk assessment of pesticide residues in food (2008) Toxicology Letters, 15, pp. 137-150Boleti, A.P., Kubo, C.E.G., MacEdo, M.L.R., Effect of Pouterin, a protein from Pouteria torta (Sapotaceae) seeds, on the development of Ephestia kuehniella (Lepidoptera: Pyralidae) (2009) International Journal of Tropical Insect Science, 29, pp. 24-30Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding (1976) Analytical Biochemistry, 72, pp. 248-254Carlini, C.R., Grossi-De-Sa, M.F., Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides (2002) Toxicon, 40 (11), pp. 1515-1539. , DOI 10.1016/S0041-0101(02)00240-4, PII S0041010102002404Coelho, M.B., Marangoni, S., Macedo, M.L.R., Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera: Pyralidae) (2007) Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 146 (3), pp. 406-414. , DOI 10.1016/j.cbpc.2007.05.001, PII S1532045607001354Eisemann, C.H., Donaldson, R.A., Pearson, R.D., Cadagon, L.C., Vacuolo, T., Tellman, R.L., Larvicidal activity of lectins on Lucilia cuprina: Mechanism of action (1994) Entomologia Experimentalis et Applicata, 72, pp. 1-11Fabre, C., Causse, H., Mourey, L., Koninkx, J., Riviere, M., Hendriks, H., Puzo, G., Rouge, P., Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. Cv. RAZ-2) seeds (1998) Biochemical Journal, 329 (3), pp. 551-560Farrar, R.R., Barbour, J.D., Kennedy, G.G., Quantifying food consumption and growth in insects (1989) Annals of the Entomological Society of America, 82, pp. 593-598Fitches, E., Gatehouse, A.M.R., Gatehouse, J.A., Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials (1997) Journal of Insect Physiology, 43 (8), pp. 727-739. , DOI 10.1016/S0022-1910(97)00042-5, PII S0022191097000425Fitches, E., Gatehouse, J.A., A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea) (1998) Journal of Insect Physiology, 44 (12), pp. 1213-1224. , DOI 10.1016/S0022-1910(98)00090-0, PII S0022191098000900Fitches, E., Wiles, D., Douglas, A.E., Hinchliffe, G., Audsley, N., Gatehouse, J.A., The insecticidal activity of recombinant garlic lectins towards aphids (2008) Insect Biochemistry and Molecular Biology, 38, pp. 905-915Gatehouse, A.M., Powell, K.S., Peumans, W.J., Van Damme, E.J., Gatehouse, J.A., Insecticidal properties of plant lectins: Their potential in plant protection (1995) Lectins: Biomedical Perspectives, pp. 35-58. , Pusztai A, Bardocz S, Editors. Taylor and FrancisHarper, M.S., Hopkins, T.L., Czapla, T.H., Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae (1998) Tissue and Cell, 30 (2), pp. 166-176. , DOI 10.1016/S0040-8166(98)80065-7Hosseininaveh, V., Bandani, A., Hosseininaveh, F., Digestive proteolytic activity in the Sunn pest, Eurygaster integriceps (2009) Journal of Insect Science, 9, p. 70. , insectscience.org/9.70Laemmili, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685Lam, S.K., Ng, T.B., Lectins: Production and practical applications (2011) Applied Microbiology and Biotechnology, 89, pp. 45-55MacEdo, M.L.R., Fernandes, K.V.S., Sales, M.P., Xavier-Filho, J., Vicilins variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus) (1993) Comparative Biochemistry and Physiology, 105, pp. 84-94MacEdo, M.L.R., Durigan, R.A., Silva, D.S., Marangoni, S., Freire, M.G.M., Parra, J.R.P., Adenanthera pavonina trypsin inhibitor retard growth of Ephestia kuehniella (Lepidoptera: Pyralidae) (2010) Archives of Insect Biochemistry and Physiology, 73, pp. 213-231MacEdo, M.L.R., Damico, D.C.S., Freire, M.G.M., Toyama, M.H., Marangoni, S., Novello, J.C., Purification and characterization of an Nacetylglucosamine- binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Ephestia kuehniella (Lepidoptera: Pyralidae) (2003) Journal of Agricultural and Food Chemistry, 51, pp. 2980-2986MacEdo, M.L.R., Freire, M.G.M., Martins, L.T.D.M., Martinez, D.S.T., Gomes, V.M., Smolka, M.B., Toyama, M.H., Coelho, L.C.B.B., Novel protein from Labramia bojeri A. DC. Seeds homologue to kunitz-type trypsin inhibitor with lectin-like properties (2004) Journal of Agricultural and Food Chemistry, 52, pp. 7548-7554Macedo, M.L.R., De Castro, M.M., Freire, M.D.G.M., Mechanisms of the insecticidal action of TEL (Talisia esculenta Lectin) against Callosobruchus maculatus (Coleoptera: Bruchidae) (2004) Archives of Insect Biochemistry and Physiology, 56 (2), pp. 84-96. , DOI 10.1002/arch.10145Macedo, M.L.R., Freire, M.D.G.M., Da Silva, M.B.R., Coelho, L.C.B.B., Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae) (2007) Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 146 (4), pp. 486-498. , DOI 10.1016/j.cbpa.2006.01.020, PII S1095643306000316, Second Special Issue of CBP dedicated to "The Face of Latin American Comparative Biochemistry and Physiology"Machuka, J., Van Damme, E.J.M., Peumans, W.J., Jackai, L.E.N., Effect of plant lectins on larval development of the legume pod borer, Maruca vitrata (1999) Entomologia Experimentalis et Applicata, 93 (2), pp. 179-187. , DOI 10.1023/A:1003801120192Murdock, L.L., Shade, R.E., Lectins and protease inhibitors as plant defenses against insects (2002) Journal of Agricultural and Food Chemistry, 50 (22), pp. 6605-6611. , DOI 10.1021/jf020192cOliveira, C.F.R., Luz, L.A., Paiva, P.M.G., Coelho, L.C.B.B., Marangoni, S., MacEdo, M.L.R., Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects (2011) Process Biochemistry, 46, pp. 498-504Pusztai, A., Ewen, S.W.B., Grant, G., Peumans, W.J., Van Damme, E.J.M., Rubio, L., Bardocz, S., Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors (1990) Digestion, 46 (SUPPL. 2), pp. 308-316Scriber, J.M., Slansky Jr., F., He nutritional ecology of immature insects (1981) Annual Review of Entomology, 26, pp. 183-211Sharma, H.C., Sharma, K.K., Crouch, J.H., Genetic transformation of crops for insect resistance: Potential and limitations (2004) Critical Reviews in Plant Sciences, 23 (1), pp. 47-72. , DOI 10.1080/07352680490273400Srinivasan, A., Giri, A.P., Gupta, V.S., Structural and functional diversities in lepidopteran serine proteases (2006) Cellular and Molecular Biology Letters, 11 (1), pp. 132-154. , http://www.springerlink.com/content/r034203283014155/fulltext.pdf, DOI 10.2478/s11658-006-0012-8Terra, W.R., Ferreira, C., Jordao, B.P., Dilion, R.J., Digestive enzymes (1996) Biology of the Insect Midgut, pp. 153-194. , Lehane MJ, Billingsley PF, Editors. Chapman and HallTerra, W.R., The origin and functions of the insect peritrophic membrane and peritrophic gel (2001) Archives of Insect Biochemistry and Physiology, 47 (2), pp. 47-61. , DOI 10.1002/arch.1036Vandenborre, G., Smagghe, G., Van Damme, E.J., Plant lectins as defense proteins against phytophagous insects (2011) Phytochemistry, 72 (13), pp. 1538-1550Vasconcelos, I.M., Oliveira, J.T.A., Ntinutritional properties of plant lectins (2004) Toxicon, 15, pp. 385-403Wang, P., Granados, R.R., Molecular structure of the peritrophic membrane (PM): Identification of potential PM target sites for insect control (2001) Archives of Insect Biochemistry and Physiology, 47 (2), pp. 110-118. , DOI 10.1002/arch.1041Wheeler, D.A., Isman, M.B., Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura (2001) Entomologia Experimentalis et Applicata, 98 (2), pp. 9-1

    Nanocomposite Polycaprolactone/carbon Nanotube Processed By Electrospinning Applying Of Ac

    No full text
    Poly (ε-caprolactone) (PCL) has been widely used as a biomaterial in recent years. Its bio-compatibility and good thermo-mechanical properties are the main features that lead to the selection of these materials for biomedical and pharmaceutical applications. The aim of this work was the processing and characterization of PCL/carbon nanotube (CNT) fibers mats with diameters in the nano and micrometer scale by electrospinning, combining the application of an Alternating Current (AC) and Direct Current (DC) aiming the formation of oriented fibers and control of the jet flow stability in order to determine process parameters and compare the effects of different frequencies during processing. The samples were characterized by Scanning Electron Microscopy (SEM), where the influence of frequency on the average diameter of fibers was observed. The interaction between PCL and carbon nanotube (NTC) was assessed by FTIR. © 2014 Taylor & Francis Group.217219Bhardwaj, N., Kundu, S.C., (2010) Biotechnology Advances, 28, pp. 325-347Costa, R.G.F., Eletrofiação de Polímeros em solução Parte II: Aplicações e Perspectivas (2012) Polímeros, 22 (2), pp. 178-185Harrison, B.S., Atala, A., Carbon nanotube applications for tissue engineering (2007) Biomaterials, 28, pp. 344-353Ishii, Y., Sakai, H., Murata, H., A new electrospinin-ning method to control the number and a diameter of uniaxially aligned polymer fibers (2008) Materials. Letters, 62, pp. 3370-3372Kessick, R., Fenn, J., Tepper, G., The use of AC potentials in electrospraying and electrospinning processes (2004) Polymer, 45, pp. 298-2984Lee, H., Yoon, H., Kim, G., Highly orientend electrospun polycaprolactone micro/nanofibers prepared by a field-controllable electrode and rotating collector (2009) Applied Physics A: Materials Science & Processing, 97, pp. 559-565Ochanda, F.O., Fabrication of superhydropho-bic fiber coatings by DC-biased AC-electrospinning (2011) Journal of Applied Polymer Science, 123, pp. 1112-1119Ramaswamy, S., Clarke, L.I., Gorga, R.E., Morphological, mechanical, and electrical properties as a function of thermal bonding in electrospun nanocomposites (2011) Polymer, 52, pp. 3183-3189Sarkar, S., Deevi, S., Tepper, G., Biased AC electro-spinning of aligned polymer nanofibers (2008) Macromolecular. Rapid Communication, 28, pp. 1034-1039Teo, W.E., Ramakrishna, S., A review on electrospin-ning design and nanofibre assemblies (2006) Nanotechnology, 17, pp. 89-106Yellampalli, S., (2011) Carbon Nanotubes-Polymer Nanocom-posites, , China: Ed. InTech-open scienceYijun, L., Qinghua, D., Riguang, J., Effects of processing variables on the morphology and diame ter of electrospun poly(amino acid ester) phosphazene nanofibers (2012) Journal of Wuhan University of Technology-Mater. Sci. Ed., 27, pp. 207-211Zhang, D., Poly(L-lactide) (PLLA)/Multiwalled carbon nanotube (MWCNT) composite: Characterization and biocompatibility evaluation (2006) Journal Phys. Chem. B, 110, pp. 2910-291

    Temperature Effects On The Nitric Acid Oxidation Of Industrial Grade Multiwalled Carbon Nanotubes

    No full text
    In this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25-175 C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 μm. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, ζ-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization. © 2013 Springer Science+Business Media Dordrecht.157Alexander, A.J., Carbon nanotubes structures and compositions: Implications for toxicological studies (2007) Nanotoxicology: Characterization, Dosing and Health Effects, pp. 7-18. , N.A. Monteiro-Riviere C.L. Tran (eds) 1 Eds. Informa Healthcare New York 10.3109/9781420045154-3Al-Jamal, K.T., Nunes, A., Methven, L., Ali-Boucetta, H., Li, S.P., Toma, F.M., Herrero, M.A., Kostarelos, K., Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile (2012) Angew Chem Int Ed, 51 (26), pp. 6389-6393. , 10.1002/anie.201201991 1:CAS:528:DC%2BC38XnsVGltbk%3DBelin, T., Epron, F., Characterization methods of carbon nanotubes: A review (2005) Mater Sci Eng B Solid State Mater Adv Technol, 119 (2), pp. 105-118. , 10.1016/j.mseb.2005.02.046Berhanu, D., Dybowska, A., Misra, S.K., Stanley, C.J., Ruenraroengsak, P., Boccaccini, A.R., Tetley, T.D., Valsami-Jones, E., Characterisation of carbon nanotubes in the context of toxicity studies (2009) Environ Health, 8 (SUPPL 1), p. 3. , 10.1186/1476-069X-8-S1-S3Cancado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.V.O., Ferrari, A.C., Quantifying defects in graphene via Raman spectroscopy at different excitation energies (2011) Nano Lett, 11 (8), pp. 3190-3196. , 10.1021/nl201432g 1:CAS:528:DC%2BC3MXotlGhsr0%3DCheung, W., Pontoriero, F., Taratula, O., Chen, A.M., He, H., DNA and carbon nanotubes as medicine (2010) Adv Drug Deliv Rev, 62 (6), pp. 633-649. , 10.1016/j.addr.2010.03.007 1:CAS:528:DC%2BC3cXntVelt7g%3DCho, J., Boccaccini, A.R., Shaffer, M.S.P., The influence of reagent stoichiometry on the yield and aspect ratio of acid-oxidised injection CVD-grown multi-walled carbon nanotubes (2012) Carbon, 50 (11), pp. 3967-3976. , 10.1016/j.carbon.2012.03.049 1:CAS:528:DC%2BC38XmvFKrt7s%3DChun, A.L., Carbon nanotubes: Safe production? (2009) Nature Nanotechnology, , doi: 10.1038/nnano.2009.339Crinelli, R., Carloni, E., Menotta, M., Giacomini, E., Bianchi, M., Ambrosi, G., Giorgi, L., Magnani, M., Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules (2010) ACS Nano, 4 (5), pp. 2791-2803. , 10.1021/nn100057c 1:CAS:528:DC%2BC3cXltVyhtrw%3DFarbod, M., Tadavani, S.K., Kiasat, A., Surface oxidation and effect of electric field on dispersion and colloids stability of multiwalled carbon nanotubes (2011) Colloid Surf A, 384 (1-3), pp. 685-690. , 10.1016/j.colsurfa.2011.05.041 1:CAS:528:DC%2BC3MXotlKgtro%3DFaria, A.F., Martinez, D.S.T., Moraes, A.C.M., Maia Da Costa, M.E.H., Barros, E.B., Souza Filho, A.G., Alves, O.L., Unveiling the role of oxidation debris on the surface chemistry of graphene through the anchoring of Ag nanoparticles (2012) Chem Mater, 24 (21), pp. 4080-4087. , 10.1021/cm301939s 1:CAS:528:DC%2BC38XhsVWksbrEFogden, S., Verdejo, R., Cottam, B., Shaffer, M., Purification of single walled carbon nanotubes: The problem with oxidation debris (2008) Chem Phys Lett, 460 (1-3), pp. 162-167. , 10.1016/j.cplett.2008.05.069 1:CAS:528:DC%2BD1cXovVCmtL0%3DFraczek-Szczypta, A., Menaszek, E., Syeda, T.B., Misra, A., Alavijeh, M., Adu, J., Blazewicz, S., Effect of MWCNT surface and chemical modification on in vitro cellular response (2012) J Nanopart Res, 14 (10), p. 1181. , 10.1007/s11051-012-1181-1Freiman, S.W., Hooker, S.A., Migler, K.D., Arepalli, S., Measurement issues in single wall carbon nanotubes (2008) National Institute of Standards and Technology, 960 (19), pp. 4-15Grobert, N., Carbon nanotubes - becoming clean (2007) Materials Today, 10 (1-2), pp. 28-35. , DOI 10.1016/S1369-7021(06)71789-8, PII S1369702106717898Guo, L., Morris, D.G., Liu, X., Vaslet, C., Hurt, R.H., Kane, A.B., Iron bioavailability and redox activity in diverse carbon nanotube samples (2007) Chemistry of Materials, 19 (14), pp. 3472-3478. , DOI 10.1021/cm062691pGutierrez-Praena, D., Pichardo, S., Sanchez, E., Grilo, A., Camean, A.M., Jos, A., Influence of carboxylic acid functionalization on the cytotoxic effects induced by single wall carbon nanotubes on human endothelial cells (HUVEC) (2011) Toxicol in Vitro, 25 (8), pp. 1883-1888. , 10.1016/j.tiv.2011.05.027 1:CAS:528:DC%2BC3MXhsVKmt7%2FKHeister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L., Flahaut, E., Soula, B., McFadden, J., Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments (2010) ACS Nano, 4 (5), pp. 2615-2626. , 10.1021/nn100069k 1:CAS:528:DC%2BC3cXksFequro%3DHondow, N., Brydson, R., Wang, P., Holton, M.D., Brown, M.R., Rees, P., Summers, H.D., Brown, A., Quantitative characterization of nanoparticle agglomeration within biological media (2012) J Nanopart Res, 14 (977), pp. 1-15Hull, M.S., Kennedy, A.J., Steevens, J.A., Bednar, A.J., Weiss, C.A., Vikesland, P.J., Release of metal impurities from carbon nanomaterials influences aquatic toxicity (2009) Environ Sci Technol, 43 (11), pp. 4169-4174. , 10.1021/es802483p 1:CAS:528:DC%2BD1MXltlKltLY%3DHussain, S.M., Braydich-Stolle, L.K., Schrand, A.M., Murdock, R.C., Yu, K.O., Mattie, D.M., Schlager, J.J., Terrones, M., Toxicity evaluation for safe use of nanomaterials: Recent achievements and technical challenges (2009) Adv Mater, 21 (16), pp. 1549-1559. , 10.1002/adma.200801395 1:CAS:528:DC%2BD1MXltFGiurk%3DKitamura, H., Sekido, M., Takeuchi, H., Ohno, M., The method for surface functionalization of single-walled carbon nanotubes with fuming nitric acid (2011) Carbon, 49 (12), pp. 3851-3856. , 10.1016/j.carbon.2011.05.020 1:CAS:528:DC%2BC3MXotlChtbo%3DKuempel, E.D., Carbon nanotube risk assessment: Implications for exposure and medical monitoring (2011) J Occup Environ Med, 53 (6 SUPPL), pp. 91-S97. , 1:CAS:528:DC%2BC3MXnt1Ggsr8%3DLehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E., Meunier, V., Evaluating the characteristics of multiwall carbon nanotubes (2011) Carbon, 49 (8), pp. 2581-2602. , 10.1016/j.carbon.2011.03.028 1:CAS:528:DC%2BC3MXksFShu7k%3DMarques, R.R.N., Machado, B.F., Faria, J.L., Silva, A.M.T., Controlled generation of oxygen functionalities on the surface of single-walled carbon nanotubes by HNO3 hydrothermal oxidation (2010) Carbon, 48 (5), pp. 1515-1523. , 10.1016/j.carbon.2009.12.047 1:CAS:528:DC%2BC3cXhs1KitL8%3DMurdock, R.C., Braydich-Stolle, L., Schrand, A.M., Schlager, J.J., Hussain, S.M., Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique (2008) Toxicol Sci, 101 (2), pp. 239-253. , 10.1093/toxsci/kfm240 1:CAS:528:DC%2BD1cXmsV2qsw%3D%3DOsswald, S., Havel, M., Gogotsi, Y., Monitoring oxidation of multiwalled carbon nanotubes by Raman spectroscopy (2007) J Raman Spectrosc, 38 (6), pp. 728-736. , 10.1002/jrs.1686 1:CAS:528:DC%2BD2sXntVOntbs%3DParadise, M., Goswami, T., Carbon nanotubes - Production and industrial applications (2007) Materials and Design, 28 (5), pp. 1477-1489. , DOI 10.1016/j.matdes.2006.03.008, PII S0261306906000914Patlolla, A.K., Hussain, S.M., Schlager, J.J., Patlolla, S., Tchounwou, P.B., Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice (2010) Environ Toxicol, 25 (6), pp. 608-621. , 10.1002/tox.20621 1:CAS:528:DC%2BC3cXhsVeqs7jIPaula, A.J., Stefani, D., Souza Filho, A.G., Kim, Y.A., Endo, M., Alves, O.L., Surface chemistry in the process of coating mesoporous SiO(2) onto carbon nanotubes driven by the formation of SiOC bonds (2011) Chemistry, 17 (11), pp. 3228-3237. , 10.1002/chem.201002455 1:CAS:528:DC%2BC3MXisFeitLw%3DPetersen, E.J., Henry, T.B., Methodological considerations for testing the ecotoxicity of carbon nanotubes and fullerenes: Review (2012) Environ Toxicol Chem, 31 (1), pp. 60-72. , 10.1002/etc.710 1:CAS:528:DC%2BC3MXhs1yktr7NPremkumar, T., Mezzenga, R., Geckeler, K.E., Carbon nanotubes in the liquid phase: Addressing the issue of dispersion (2012) Small, 8 (9), pp. 1299-1313. , 10.1002/smll.201101786 1:CAS:528:DC%2BC38XktFyjsbY%3DRaffa, V., Ciofania, G., Nitodasb, S., Karachaliosb, T., D'Alessandrod, D., Masinie, M., Cuschieria, A., Can the properties of carbon nanotubes influence their internalization by living cells? (2008) Carbon, 46 (12), pp. 1600-1610. , 10.1016/j.carbon.2008.06.053 1:CAS:528:DC%2BD1cXhtVGkt7fMRaffa, V., Ciofani, G., Vittorio, O., Riggio, C., Cuschieri, A., Physicochemical properties affecting cellular uptake of carbon nanotubes (2010) Nanomedicine, 5 (1), pp. 89-97. , 10.2217/nnm.09.95 1:CAS:528:DC%2BD1MXhs1Sjs7%2FJRomanos, G.E., Likodimos, V., Marques, R.R.N., Steriotis, T.A., Papageorgiou, S.K., Faria, J.L., Figueiredo, J.L., Falaras, P., Controlling and quantifying oxygen functionalities on hydrothermally and thermally treated single-wall carbon nanotubes (2011) J Phys Chem C, 115 (17), pp. 8534-8546. , 10.1021/jp200464d 1:CAS:528:DC%2BC3MXks1Glur8%3DRosca, I.D., Watari, F., Uo, M., Akasaka, T., Oxidation of multiwalled carbon nanotubes by nitric acid (2005) Carbon, 43 (15), pp. 3124-3131. , DOI 10.1016/j.carbon.2005.06.019, PII S0008622305003593Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., Wilson, N.R., The real graphene oxide revealed: Stripping the oxidative debris from the graphene-like sheets (2011) Angew Chem Int Ed, 50 (14), pp. 3173-3177. , 10.1002/anie.201007520 1:CAS:528:DC%2BC3MXjsFyqsro%3DSharifi, S., Behzadi, S., Laurent, S., Forrest, M.L., Stroeve, P., Mahmoudi, M., Toxicity of nanomaterials (2012) Chem Soc Rev, 41 (6), pp. 2323-2343. , 10.1039/c1cs15188f 1:CAS:528:DC%2BC38XivFWlsbk%3DSingh, R.P., Das, M., Thakare, V., Jain, S., Functionalization density dependent toxicity of oxidized multiwalled carbon nanotubes in a murine macrophage cell line (2012) Chem Res Toxicol, 25 (10), pp. 2127-2137. , 10.1021/tx300228d 1:CAS:528:DC%2BC38XhtlOmur7OSmith, B., Wepasnick, K., Schrote, K.E., Bertele, A.H., Ball, W.P., O'Melia, C., Fairbrother, D.H., Colloidal properties of aqueous suspensions of acid-treated, multi-walled carbon nanotubes (2009) Environ Sci Technol, 43 (3), pp. 819-825. , 10.1021/es802011e 1:CAS:528:DC%2BD1cXhsFCltL7MStefani, D., Paula, A.J., Vaz, B.G., Silva, R.A., Andrade, N.F., Justo, G.Z., Ferreira, C.V., Alves, O.L., Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes (2011) J Hazard Mater, 189 (1-2), pp. 391-396. , 10.1016/j.jhazmat.2011.02.050 1:CAS:528:DC%2BC3MXksVelsL0%3DTan, C.W., Tan, K.H., Ong, Y.T., Mohamed, A.R., Zein, S.H.S., Tan, S.H., Energy and environmental applications of carbon nanotubes (2012) Environ Chem Lett, 10 (3), pp. 265-273. , 10.1007/s10311-012-0356-4 1:CAS:528:DC%2BC38XhtF2gtLvMTobias, G., Shao, L.D., Ballesteros, B., Green, M.L.H., Enhanced sidewall functionalization of single-wall carbon nanotubes using nitric acid (2009) J Nanosci Nanotechnol, 9 (10), pp. 6072-6077. , 10.1166/jnn.2009.1567 1:CAS:528:DC%2BD1MXht1yrtrvOTripathi, S., Sonkar, S.K., Sarkar, S., Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes (2011) Nanoscale, 3 (3), pp. 1176-1181. , 10.1039/c0nr00722f 1:CAS:528:DC%2BC3MXjtlSgtLg%3DVardharajula, S., Ali, S.Z., Tiwari, P.M., Eroglu, E., Vig, K., Dennis, V.A., Singh, S.R., Functionalized carbon nanotubes: Biomedical applications (2012) Int J Nanomed, 7, pp. 5361-5374. , 1:CAS:528:DC%2BC38XhsFylu7zIVerdejo, R., Lamoriniere, S., Cottam, B., Bismarck, A., Shaffer, M., Removal of oxidation debris from multi-walled carbon nanotubes (2007) Chemical Communications, (5), pp. 513-515. , DOI 10.1039/b611930aVillagarcia, H., Dervishi, E., De Silva, K., Biris, A.S., Khodakovskaya, M.V., Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants (2012) Small, 8 (15), pp. 2328-2334. , 10.1002/smll.201102661 1:CAS:528:DC%2BC38Xls1egtrk%3DWang, Z., Korobeinyk, A., Whitby, R.L.D., Meikle, S.T., Mikhalovsky, S.V., Acquah, S.F.A., Kroto, H.W., Direct confirmation that carbon nanotubes still react covalently after removal of acid-oxidative lattice fragments (2010) Carbon, 48 (3), pp. 916-918. , 10.1016/j.carbon.2009.10.025 1:CAS:528:DC%2BD1MXhsFGnu7fPWarheit, D.B., How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? (2008) Toxicol Sci, 101 (2), pp. 183-185. , 10.1093/toxsci/kfm279 1:CAS:528:DC%2BD1cXmsV2ruw%3D%3DWick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J., Bruinink, A., The degree and kind of agglomeration affect carbon nanotube cytotoxicity (2007) Toxicology Letters, 168 (2), pp. 121-131. , DOI 10.1016/j.toxlet.2006.08.019, PII S0378427406013397Worsley, K.A., Kalinina, I., Bekyarova, E., Haddon, R.C., Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes (2009) J Am Chem Soc, 131 (50), pp. 18153-18158. , 10.1021/ja906267g 1:CAS:528:DC%2BD1MXhsValtbnJWu, W.H., Chen, W., Lin, D.H., Yang, K., Influence of surface oxidation of multiwalled carbon nanotubes on the adsorption affinity and capacity of polar and nonpolar organic compounds in aqueous phase (2012) Environ Sci Technol, 46 (10), pp. 5446-5454. , 10.1021/es3004848 1:CAS:528:DC%2BC38XlvV2ksrs%3DYu, H., Jin, Y.G., Peng, F., Wang, H.J., Yang, J., Kinetically controlled side-wall functionalization of carbon nanotubes by nitric acid oxidation (2008) J Phys Chem C, 112 (17), pp. 6758-6763. , 10.1021/jp711975a 1:CAS:528:DC%2BD1cXksVSgsbk%3

    Lipopolysaccharide Influences On The Toxicity Of Oxidised Multiwalled Carbon Nanotubes To Murine Splenocytes In Vitro

    No full text
    This experimental study evaluated the influence of the presence of lipopolysaccharide (LPS), a common bacterial endotoxin, on the nitric acid oxidised multiwalled carbon nanotubes (Ox-MWCNT) during the assessment of in vitro toxicity to splenocytes, an immune system cell isolated from BALB/c mice. The concentration of LPS was determined by Limulus Amebocyte assay and this endotoxin was removed from Ox-MWCNT by using three cycles of autoclave. Splenocytes were cultured in RPMI 1640 media with 1.0, 5.0 or 10 ng/mL of Ox-MWCNT. The results showed that the presence of LPS on Ox-MWCNT did not affect the growth of splenocytes in vitro. However, the absence of LPS decreased the splenocytes viability significantly. © 2014 © 2014 Taylor & Francis

    Melaleuca alternifolia nanoparticles against Candida species biofilms

    No full text
    Candida infection is an important cause of morbidity and mortality on immunosuppressed patients. This growing trend has been associated with resistance to the antimicrobial therapy and the ability of microorganism to form biofilms. TTO oil is used as antimicrobial which shows antibiofilm activity against Candida species. However, it presents problems due to its poor solubility and high volatility. The present study aimed to evaluate in vitro antibiofilm activity of TTO nanoparticles against many Candida species. It was performed the characterization of the oil and nanoparticles. The levels of exopolysaccharides, proteins, and the biomass of biofilms were measured. The chromatographic profile demonstrated that the TTO oil is in accordance with ISO 4730 with major constituents of 41.9% Terpinen-4-ol, 20.1% of γ-Terpinene, 9,8% of α-Terpinene, and 6,0% of 1,8-Cineole. The TTO nanoparticles showed pH of 6.3, mean diameter of 158.2 ± 2 nm, polydispersion index of 0.213 ± 0.017, and zeta potential of −8.69 ± 0.80 mV. The addition of TTO and its nanoparticles represented a significant reduction of biofilm formed by all Candida species, as well as a reduction of proteins and exopolysaccharides levels. It was possible to visualize the reduction of biofilm in presence of TTO nanoparticles by Calcofluor White method.104125132CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DO RIO GRANDE DO SUL - FAPERGSSem informaçãoSem informaçãoSem informaçã
    corecore