51,062 research outputs found

    Automatic Generation of Cognitive Theories using Genetic Programming

    Get PDF
    Cognitive neuroscience is the branch of neuroscience that studies the neural mechanisms underpinning cognition and develops theories explaining them. Within cognitive neuroscience, computational neuroscience focuses on modeling behavior, using theories expressed as computer programs. Up to now, computational theories have been formulated by neuroscientists. In this paper, we present a new approach to theory development in neuroscience: the automatic generation and testing of cognitive theories using genetic programming. Our approach evolves from experimental data cognitive theories that explain “the mental program” that subjects use to solve a specific task. As an example, we have focused on a typical neuroscience experiment, the delayed-match-to-sample (DMTS) task. The main goal of our approach is to develop a tool that neuroscientists can use to develop better cognitive theories

    Non-Hermitian robust edge states in one-dimension: Anomalous localization and eigenspace condensation at exceptional points

    Full text link
    Capital to topological insulators, the bulk-boundary correspondence ties a topological invariant computed from the bulk (extended) states with those at the boundary, which are hence robust to disorder. Here we put forward an ordering unique to non-Hermitian lattices, whereby a pristine system becomes devoid of extended states, a property which turns out to be robust to disorder. This is enabled by a peculiar type of non-Hermitian degeneracy where a macroscopic fraction of the states coalesce at a single point with geometrical multiplicity of 11, that we call a phenomenal point.Comment: 6 pages, 4 figure
    • 

    corecore