3,180 research outputs found

    Paper Microzone Plates as Analytical Tools for Studying Enzyme Stability: A Case Study on the Stabilization of Horseradish Peroxidase Using Trehalose and SU-8 Epoxy Novolac Resin

    Get PDF
    Paper microzone plates in combination with a noncontact liquid handling robot were demonstrated as tools for studying the stability of enzymes stored on paper. The effect of trehalose and SU-8 epoxy novolac resin (SU-8) on the stability of horseradish peroxidase (HRP) was studied in both a short-term experiment, where the activity of various concentrations of HRP dried on paper were measured after 1 h, and a long-term experiment, where the activity of a single concentration of HRP dried and stored on paper was monitored for 61 days. SU-8 was found to stabilize HRP up to 35 times more than trehalose in the short-term experiment for comparable concentrations of the two reagents, and a 1% SU-8 solution was found to stabilize HRP approximately 2 times more than a 34% trehalose solution in both short- and long-term experiments. The results suggest that SU-8 is a promising candidate for use as an enzyme-stabilizing reagent for paper-based diagnostic devices and that the short-term experiment could be used to quickly evaluate the capacity of various reagents for stabilizing enzymes to identify and characterize new enzyme-stabilizing reagents

    Fabrication of Miniaturized Paper-Based Microfluidic Devices (MicroPADs)

    Get PDF
    Microfluidic paper-based analytical devices (microPADs) are emerging as cost-effective and portable platforms for point-of-care assays. A fundamental limitation of microPAD fabrication is the imprecise nature of most methods for patterning paper. The present work demonstrates that paper patterned via wax printing can be miniaturized by treating it with periodate to produce higher-resolution, high-fidelity microPADs. The optimal miniaturization parameters were determined by immersing microPADs in various concentrations of aqueous sodium periodate (NaIO4) for varying lengths of time. This treatment miniaturized microPADs by up to 80% in surface area, depending on the concentration of periodate and length of the reaction time. By immersing microPADs in 0.5-M NaIO4 for 48 hours, devices were miniaturized by 78% in surface area, and this treatment allowed for the fabrication of functional channels with widths as small as 301 µm and hydrophobic barriers with widths as small as 387 µm. The miniaturized devices were shown to be compatible with redox-based colorimetric assays and enzymatic reactions. This miniaturization technique provides a new option for fabricating sub-millimeter-sized features in paper-based fluidic devices without requiring specialized equipment and could enable new capabilities and applications for microPADs

    Paper and toner three-dimensional fluidic devices: Programming fluid flow to improve point-of-care diagnostics

    Get PDF
    We present a new method for fabricating three-dimensional paper-based fluidic devices that uses toner as a thermal adhesive to bond multiple layers of patterned paper together. The fabrication process is rapid, involves minimal equipment (a laser printer and a laminator) and produces complex channel networks with dimensions down to 1 mm. The devices can run multiple diagnostic assays on one or more samples simultaneously, can incorporate positive and negative controls and can be programmed to display the results of the assays in a variety of patterns. The patterns of the results can encode information, which could be used to identify counterfeit devices, identify samples, encrypt the results for patient privacy or monitor patient compliance

    Paper-based standard addition assays

    Get PDF
    Standard addition assays conducted on paper-based microfluidic devices are introduced as an alternative to external standards for calibrating quantitative tests. To demonstrate this technique, a colorimetric, paper-based, standard addition assay was optimized for the determination of glucose concentrations in the range of 0 to 5 mM. Comparable results were obtained from the assay via digital image colorimetry under three different lighting conditions

    Development of Novel Integrated Antennas for CubeSats

    Get PDF
    The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats

    Poly(N-isopropylacrylamide) hydrogels for storage and delivery of reagents to paper-based analytical devices

    Get PDF
    The thermally responsive hydrogel N,N\u27-methylenebisacrylamide-cross-linked poly(N-isopropylacrylamide) (PNIPAM) was developed and evaluated as a reagent storage and delivery system for microfluidic paper-based analytical devices (microPADs). PNIPAM was shown to successfully deliver multiple solutions to microPADs in specific sequences or simultaneously in laminar-flow configuration and was found to be suitable for delivering four classes of reagents to the devices: Small molecules, enzymes, antibodies and DNA. PNIPAM was also able to successfully deliver a series of standard glucose solutions to microPADs equipped to perform a colorimetric glucose assay. The results of these tests were used to produce an external calibration curve, which in turn was used to determine the concentration of glucose in sample solutions. Finally, PNIPAM was used to store the enzyme horseradish peroxidase for 35 days under ambient conditions with no significant loss of activity. The combination of PNIPAM and microPADs may allow for more complex assays to be performed on paper-based devices, facilitate the preparation of external calibration curves in the field, and extend the shelf life of microPADs by stabilizing reagents in an easy-to-use format

    Paper-based Diagnostic Devices

    Get PDF
    This chapter will provide an overview of existing diagnostic devices made primarily out of paper and then focus on paper-based microfluidic devices, the next generation of paper-based diagnostic devices that promises to extend the use of paper as a material for fabricating diagnostic devices well into the future. Chapter Contents: 2.1 Introduction 2.2 Current paper-based diagnostic devices 2.2.1 Dipstick devices 2.2.2 Lateral-flow devices 2.2.2.1 Vertical-flow devices 2.2.3 Paper-based arrays 2.3 Paper-based microfluidic devices 2.3.1 Fabrication of paper-based microfluidic devices 2.3.2 Applications of paper-based microfluidic devices 2.4 Conclusions Reference

    Correction to Fully Enclosed Microfluidic Paper-Based Analytical Devices

    Get PDF
    There is an error in the units of the concentrations of potassium iodide and trehalose described in the experimental details on page 1581. The correct concentrations are 0.6 M potassium iodide and 0.3 M trehalose

    Fully Enclosed Microfluidic Paper-Based Analytical Devices

    Get PDF
    This article introduces fully enclosed microfluidic paper-based analytical devices (microPADs) fabricated by printing toner on the top and bottom of the devices using a laser printer. Enclosing paper-based microfluidic channels protects the channels from contamination, contains and protects reagents stored on the device, contains fluids within the channels so that microPADs can be handled and operated more easily, and reduces evaporation of solutions from the channels. These benefits extend the capabilities of microPADs for applications as low-cost point-of-care diagnostic devices

    Two-ply channels for faster wicking in paper-based microfluidic devices

    Get PDF
    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas–Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated
    • …
    corecore