268 research outputs found

    Emulation of Wind Turbines

    Get PDF
    This chapter presents the modeling, simulation, and emulation for small wind turbine (WT) systems. The main objective of the emulation system is to reproduce the WT torque dynamic behavior in the generator shaft, which must be similar to one of real horizontal WTs used for distributed generation. The aerodynamic, mechanical, and electrical models for horizontal axis wind turbines (HAWTs) are presented in detail. The models are used for simulation analysis and emulation synthesis. The emulator consists a (i) computational platform, which is based on LabVIEW® environment and runs the model of the WT and (ii) an induction motor (IM) with AC power drive with torque control. The IM shaft is directly coupled with the real small wind generator and corresponding load. Experimental waveforms are also presented to demonstrate the functionality of the system

    Predicting Earthquake-Induced Landslides by Using a Stochastic Modeling Approach: A Case Study of the 2001 El Salvador Coseismic Landslides

    Get PDF
    In January and February 2001, El Salvador was hit by two strong earthquakes that triggered thousands of landslides, causing 1259 fatalities and extensive damage. The analysis of aerial and SPOT-4 satellite images allowed us to map 6491 coseismic landslides, mainly debris slides and flows that occurred in volcanic epiclastites and pyroclastites. Four different multivariate adaptive regression splines (MARS) models were produced using different predictors and landslide inventories which contain slope failures triggered by an extreme rainfall event in 2009 and those induced by the earthquakes of 2001. In a predictive analysis, three validation scenarios were employed: the first and the second included 25% and 95% of the landslides, respectively, while the third was based on a k-fold spatial cross-validation. The results of our analysis revealed that: (i) the MARS algorithm provides reliable predictions of coseismic landslides; (ii) a better ability to predict coseismic slope failures was observed when including susceptibility to rainfall-triggered landslides as an independent variable; (iii) the best accuracy is achieved by models trained with both preparatory and trigger variables; (iv) an incomplete inventory of coseismic slope failures built just after the earthquake event can be used to identify potential locations of yet unreported landslides

    Quantification of the severity of hypoxic-ischemic brain injury in a neonatal preclinical model using measurements of cytochrome-c-oxidase from a miniature broadband-near-infrared spectroscopy system

    Get PDF
    We describe the development of a miniaturized broadband near-infrared spectroscopy system (bNIRS), which measures changes in cerebral tissue oxyhemoglobin (  [  HbO₂ ]  ) and deoxyhemoglobin ([HHb]) plus tissue metabolism via changes in the oxidation state of cytochrome-c-oxidase ([oxCCO]). The system is based on a small light source and a customized mini-spectrometer. We assessed the instrument in a preclinical study in 27 newborn piglets undergoing transient cerebral hypoxia-ischemia (HI). We aimed to quantify the recovery of the HI insult and estimate the severity of the injury. The recovery in brain oxygenation (Δ  [  HbDiff  ]    =  Δ  [  HbO₂  ]    −  Δ  [  HHb  ]  ), blood volume (Δ  [  HbT  ]    =  Δ  [  HbO₂  ]    +  Δ  [  HHb  ]  ), and metabolism (Δ  [  oxCCO  ]  ) for up to 30 min after the end of HI were quantified in percentages using the recovery fraction (RF) algorithm, which quantifies the recovery of a signal with respect to baseline. The receiver operating characteristic analysis was performed on bNIRS-RF measurements compared to proton (H1) magnetic resonance spectroscopic (MRS)-derived thalamic lactate/N-acetylaspartate (Lac/NAA) measured at 24-h post HI insult; Lac/NAA peak area ratio is an accurate surrogate marker of neurodevelopmental outcome in babies with neonatal HI encephalopathy. The Δ  [  oxCCO  ]  -RF cut-off threshold of 79% within 30 min of HI predicted injury severity based on Lac/NAA with high sensitivity (100%) and specificity (93%). A significant difference in thalamic Lac/NAA was noticed (p  <  0.0001) between the two groups based on this cut-off threshold of 79% Δ  [  oxCCO  ]  -RF. The severe injury group (n  =  13) had ∼30  %   smaller recovery in Δ  [  HbDiff  ]  -RF (p  =  0.0001) and no significant difference was observed in Δ  [  HbT  ]  -RF between groups. At 48 h post HI, significantly higher P31-MRS-measured inorganic phosphate/exchangeable phosphate pool (epp) (p  =  0.01) and reduced phosphocreatine/epp (p  =  0.003) were observed in the severe injury group indicating persistent cerebral energy depletion. Based on these results, the bNIRS measurement of the oxCCO recovery fraction offers a noninvasive real-time biomarker of brain injury severity within 30 min following HI insult

    Systems Biology Model of Cerebral Oxygen Delivery and Metabolism During Therapeutic Hypothermia: Application to the Piglet Model

    Get PDF
    Hypoxic ischaemic encephalopathy (HIE) is a significant cause of death and disability. Therapeutic hypothermia (TH) is the only available standard of treatment, but 45-55% of cases still result in death or neurodevelopmental disability following TH. This work has focussed on developing a new brain tissue physiology and biochemistry systems biology model that includes temperature effects, as well as a Bayesian framework for analysis of model parameter estimation. Through this, we can simulate the effects of temperature on brain tissue oxygen delivery and metabolism, as well as analyse clinical and experimental data to identify mechanisms to explain differing behaviour and outcome. Presented here is an application of the model to data from two piglets treated with TH following hypoxic-ischaemic injury showing different responses and outcome following treatment. We identify the main mechanism for this difference as the Q10 temperature coefficient for metabolic reactions, with the severely injured piglet having a median posterior value of 0.133 as opposed to the mild injury value of 5.48. This work demonstrates the use of systems biology models to investigate underlying mechanisms behind the varying response to hypothermic treatment

    Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids

    Get PDF
    Objective. The development of electrode arrays able to reliably record brain electrical activity is a critical issue in brain machine interface (BMI) technology. In the present study we undertook a comprehensive physico-chemical, physiological, histological and immunohistochemical characterization of new single-walled carbon nanotubes (SWCNT)-based electrode arrays grafted onto medium-density polyethylene (MD-PE) films. Approach. The long-term electrical stability, flexibility, and biocompatibility of the SWCNT arrays were investigated in vivo in laboratory rats by two-months recording and analysis of subdural electrocorticogram (ECoG). Ex-vivo characterization of a thin flexible and single probe SWCNT/polymer electrode is also provided. Main results. The SWCNT arrays were able to capture high quality and very stable ECoG signals across 8 weeks. The histological and immunohistochemical analyses demonstrated that SWCNT arrays show promising biocompatibility properties and may be used in chronic conditions. The SWCNT-based arrays are flexible and stretchable, providing low electrode-tissue impedance, and, therefore, high compliance with the irregular topography of the cortical surface. Finally, reliable evoked synaptic local field potentials in rat brain slices were recorded using a special SWCNT-polymer-based flexible electrode. Significance. The results demonstrate that the SWCNT arrays grafted in MD-PE are suitable for manufacturing flexible devices for subdural ECoG recording and might represent promising candidates for long-term neural implants for epilepsy monitoring or neuroprosthetic BMI

    Advanced surface treatments for medium-velocity superconducting RF cavities for high accelerating gradient continuous-wave operation

    Full text link
    Nitrogen-doping and furnace-baking are advanced high-Q0 recipes developed for 1.3 GHz TESLA-type cavities. These treatments will significantly benefit the high-Q0 linear accelerator community if they can be successfully adapted to different cavity styles and frequencies. Strong frequency- and geometry- dependence of these recipes makes the technology transfer amongst different cavity styles and frequencies far from straightforward, and requires rigorous study. Upcoming high-Q0 continuous-wave linear accelerator projects, such as the proposed Michigan State University Facility for Rare Isotope Beam Energy Upgrade, and the underway Fermilab's Proton Improvement Plan-II, could benefit enormously from adapting these techniques to their beta_opt = 0.6 ~650 MHz 5-cell elliptical superconducting rf cavities, operating at an accelerating gradient of around ~17 MV/m. This is the first investigation of the adaptation of nitrogen doping and medium temperature furnace baking to prototype 644 MHz beta_opt = 0.65 cavities, with the aim of demonstrating the high-Q0 potential of these recipes in these novel cavities for future optimization as part of the FRIB400 project R&D. We find that nitrogen-doping delivers superior Q0, despite the sub-GHz operating frequency of these cavities, but is sensitive to the post-doping electropolishing removal step and experiences elevated residual resistance. Medium temperature furnace baking delivers reasonable performance with decreased residual resistance compared to the nitrogen doped cavity, but may require further recipe refinement. The gradient requirement for the FRIB400 upgrade project is comfortably achieved by both recipes.Comment: 16 pages, 5 figure

    Allogeneic mesenchymal stem cells improve the wound healing process of sheep skin

    Get PDF
    Abstract Background Skin wound healing includes a system of biological processes, collectively restoring the integrity of the skin after injury. Healing by second intention refers to repair of large and deep wounds where the tissue edges cannot be approximated and substantial scarring is often observed. The objective of this study was to evaluate the effects of mesenchymal stem cells (MSCs) in second intention healing using a surgical wound model in sheep. MSCs are known to contribute to the inflammatory, proliferative, and remodeling phases of the skin regeneration process in rodent models, but data are lacking for large animal models. This study used three different approaches (clinical, histopathological, and molecular analysis) to assess the putative action of allogeneic MSCs at 15 and 42 days after lesion creation. Results At 15 days post-lesion, the wounds treated with MSCs showed a higher degree of wound closure, a higher percentage of re-epithelialization, proliferation, neovascularization and increased contraction in comparison to a control group. At 42 days, the wounds treated with MSCs had more mature and denser cutaneous adnexa compared to the control group. The MSCs-treated group showed an absence of inflammation and expression of CD3+ and CD20+. Moreover, the mRNA expression of hair-keratine (hKER) was observed in the MSCs-treated group 15 days after wound creation and had increased significantly by 42 days post-wound creation. Collagen1 gene (Col1α1) expression was also greater in the MSCs-treated group compared to the control group at both days 15 and 42. Conclusion Peripheral blood-derived MSCs may improve the quality of wound healing both for superficial injuries and deep lesions. MSCs did not induce an inflammatory response and accelerated the appearance of granulation tissue, neovascularization, structural proteins, and skin adnexa
    corecore