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Abstract

Hypoxic ischaemic encephalopathy (HIE) is a 
significant cause of death and disability. 
Therapeutic hypothermia (TH) is the only 
available standard of treatment, but 45–55% 
of cases still result in death or neurodevelop-
mental disability following TH. This work has 
focussed on developing a new brain tissue 
physiology and biochemistry systems biology 
model that includes temperature effects, as 
well as a Bayesian framework for analysis of 
model parameter estimation. Through this, we 
can simulate the effects of temperature on 
brain tissue oxygen delivery and metabolism, 
as well as analyse clinical and experimental 
data to identify mechanisms to explain differ-

ing behaviour and outcome. Presented here is 
an application of the model to data from two 
piglets treated with TH following hypoxic- 
ischaemic injury showing different responses 
and outcome following treatment. We identify 
the main mechanism for this difference as the 
Q10 temperature coefficient for metabolic 
reactions, with the severely injured piglet hav-
ing a median posterior value of 0.133 as 
opposed to the mild injury value of 5.48. This 
work demonstrates the use of systems biology 
models to investigate underlying mechanisms 
behind the varying response to hypothermic 
treatment.
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5.1  Introduction

Hypoxic-ischaemic encephalopathy (HIE) is a 
significant cause of death and morbidity amongst 
neonates with around 700,000 deaths attributed 
to HIE alone annually [1]. Following neonatal HI 
injury, infants are treated with therapeutic hypo-
thermia (TH) at a body temperature of 33.5 °C 
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[2]. However, 45–55% of cases treated with 
hypothermia end with death or moderate to 
severe neurodevelopmental disability [1, 3]. 
During hypothermia, a close neuromonitoring is 
in place combining clinical electroencephalogra-
phy (EEG) [4] and broadband NIRS [2, 5] as a 
research tool in the neonatal unit in University 
College London Hospital (UCLH). After com-
pletion of TH, infants undergo magnetic reso-
nance imaging (MRI) and spectroscopy (MRS) 
[6]. The collected multimodal data has the poten-
tial to provide not only diagnostic and prognostic 
information but also insights on the mechanisms 
of the injury.

Our approach to analysis of this multimodal 
data has been multifaceted, with one key facet 
being the development and application of a 
physiology- informed “mathematical model” of 
the cerebral circulation under a systems biology 
approach, which is specially designed for the 
interpretation of bNIRS signals [7–12].

The first model BRAINCIRC was developed in 
2005 [7]. This was later simplified and extended to 
include metabolism in 2008 via the BrainSignals 
model [8]. This was used to develop the BrainPiglet 
model [9], with the piglet being a common clinical 
model of human neonates. BrainPiglet was 
extended and used to investigate the effect of 
hypoxic ischaemia in the piglet model in the 
BrainPigletHI model [10]. Separate to the piglet 
models, BrainSignals was simplified further in the 
BrainSignals Revisited (BSRV) model to improve 
run time [11]. BSRV was extended to include 
extracerebral blood flow in BSX and looked at the 
confounding effects of the scalp on measurements 
[12]. Recently, significant work has been under-
taken in developing the “BP Hypothermia” model 
(BPH1) which extended the BrainPiglet HI model 
to include temperature as an input [13]. This is 
needed to properly interpret data collected during 
therapeutic hypothermia. For example, it has been 
observed that both cerebral metabolic rate of oxy-
gen (CMRO2) and cerebral blood flow (CBF) in 
piglets decrease with reduced body temperature 
[14]. For reliable inferences to be made using sys-
tems biology models, they must be able to simu-
late this behaviour.

We present here an extended version of this 
model, BP Hypothermia 2 (BPH2), able to incor-
porate the effect of temperature separately for 
both metabolic and haemodynamic processes and 
reactions. This model is then validated against 
data collected from piglets undergoing TH fol-
lowing HIE.

5.2  Methods

BPH2 follows the same form as the original BP 
Hypothermia model [14], incorporating the effect 
of temperature by adapting work by Orlowski 
et al. [15]. Reaction rates, Michaelis-Menten rate 
constants and diffusion rates are modified by the 
quantities
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where Q10, haemo is the Q10 coefficient for haemo-
dynamic reactions, Q10, met is the Q10 coefficient 
for metabolic reactions, ki, ∗ is the reaction rate 
for the ith haemodynamic reaction and kj, ∗ is 
the reaction rate for the jth metabolic reaction 
at temperatures Tnew and Tprevious. Q10 is the tem-
perature coefficient, defined as the ratio of reac-
tion rates measured for the same reaction at two 
temperatures 10 °C apart. 0 < Q10 < 1 indicates 
that decreasing temperature increases the reac-
tion rate, whilst Q10 > 1 indicates that decreas-
ing temperature decreases the reaction rate. 
Figure 5.1 outlines the structure of this model.

This model was then used to analyse data 
from two piglets, as shown in Fig. 5.2. Data was 
collected as per [16], with the piglets’ common 
carotid arteries occluded for a period of around 
25  minutes. Following HI, the piglets were 
treated with TH at 33.5  °C.  HbO2, HHb and 
CCO data was collected via bNIRS, whilst the 
thalamic lactate/N-acetyl-aspartate (Lac/NAA) 
ratio was measured at 24  hours using proton 
MRS.  Piglet LWP475 suffered a mild injury 
with a 10-minute CCO recovery fraction of 
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122% and a Lac/NAA ratio of 0.21 (Lac/
NAA ≥ 0.39 [6] is associated with a poor out-
come). Piglet LWP479 suffered a severe injury 
with a 10-minute CCO recovery fraction of 69% 
and a 24-hour Lac/NAA ratio of 1.03. Both pig-
lets received TH with piglet LWP475 respond-
ing typically, as per [13], with increased HbO2, 
decreased HHb and decreased CCO, whilst pig-
let LWP479 responded atypically with an 
“inverted” response in the bNIRS signals. 
Model analysis was performed using the 
BayesCMD framework [17].

Before performing model fitting, it is neces-
sary to reduce the model down to manageable 
number of parameters. This is done using sensi-
tivity analysis (SA) in order to identify parame-
ters that control the majority of the behaviour 

we are attempting to simulate. We used the 
Morris method, summarising model output by 
the normalised root-mean-square error 
(NRMSE) between simulation and measured 
data. This was performed twice per model, once 
substituting the NRMSE value of failed runs 
with zero and once replacing it by 10,000,000. 
This was done to try and find a balance between 
including sensitive parameters that may produce 
failed runs and only selecting parameters that 
overwhelmingly cause failed runs. Failed runs 
should not be ignored completely as the reason 
a run fails is likely to be due to an invalid value 
for a highly sensitive parameter. Parameter 
count was reduced from an original count of 234 
to a fitted count of 11, with this parameters 
shown in Table 5.1.

Fig. 5.1 General structure of the BrainPiglet hypother-
mia 2 model. Model inputs, arterial blood pressure (ABP), 
arterial oxygen saturation (SaO2), partial pressure of CO2 
(PaCO2) and demand, and outputs, concentrations of oxy-
haemoglobin (HbO2), deoxyhaemoglobin (HHb) and 
cytochrome-c-oxidase (CCO), tissue oxygenation index 
(TOI), middle cerebral artery velocity (Vmca) and cerebral 

metabolic rate of oxygen (CMRO2), are shown, as well as 
each of the four sub-models and the general relations 
between each. New additions are shown in bold. 
Temperature is added as an input to the model. Parameter 
Q10, met and temporary variable Qtemp, met are added to the 
metabolic compartment, and parameter Q10, haemo and tem-
porary variable Qtemp, haemo are added to the blood flow 
compartment
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5.3  Result

Following this, posterior parameter distribution 
fitting was performed using approximate Bayesian 
computation via a rejection algorithm with a total 
of 50,000,000 samples. Each parameter was given 
an uninformative uniform prior distribution. The 
top 0.01% of parameter samples, based on 
NRMSE, were used to generate posterior distribu-
tions for each piglet giving a posterior of 5000 
samples. These are shown in Fig. 5.3 with piglet 
LWP475 shown in blue and piglet LWP479  in 
orange. A distinct difference between the param-
eter spaces of the two piglets is clearly visible for 
Q10, met, Q10, haemo, normal oxidised fraction of CuA 
(afrac, n) and the normal total concentration of 

HbO2 binding sites in blood (Xtot, n), with Q10, met 
showing the most obvious and potentially impor-
tant disparity. For further information about afrac, n 
and Xtot, n, see Table 5.1 and [10].

Figure 5.4 shows the posterior predictive dis-
tributions for each piglet generated by sampling 
repeatedly from the posterior distributions shown 
in Fig. 5.3. The posterior predictive distributions 
are shown in blue and include a 95% confidence 
interval, whilst data is shown in green. The model 
simulations show good agreement with the mea-
sured data with only a small time lag between the 
model and data for the CCO signal in piglet 
LWP479. Importantly, the model can correctly 
reproduce the overall behaviour of the system in 
both piglets suggesting that the posterior distri-

Fig. 5.2 Data for piglets LWP475 (a–f) and LWP479 (g–l). Measured data for piglets LWP475 and LWP479, showing 
the piglet response to hypothermia across measurable quantities
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butions produced in Fig. 5.3 are reasonably good 
indications of the mechanisms behind the differ-
ence in the measured responses to hypothermia.

5.4  Discussion

We have successfully expanded our model of 
hypothermia in the piglet brain to incorporate 
different temperature effects on metabolic and 
haemodynamic reactions. Additionally, this has 

been achieved without introducing excessive 
complexity into the model, adding only one new 
parameter as compared to the previous BPH1 
model  – Q10 is split into Q10,met and Q10,haemo. 
This model has then been validated against data 
collected from two piglets suffering the same 
injury to differing levels of severity. Not only 
was this able to validate the new model but it 
was also able to provide some insight into the 
different haemodynamic and metabolic behav-
iour seen in both piglets.

Fig. 5.3 Posterior parameter distributions. Posterior dis-
tributions of parameters with those for piglet LWP475 
shown in blue and those for piglet LWP479 shown in 
orange. Inset are the marginal distributions for parameter 
Q10, met. A distinct difference in the parameter value 

between the two piglets is clearly visible, with piglet 
LWP479 having a distribution of values well below 1. For 
more information about specific parameters, please see 
Table 5.1

5 Systems Biology Model of Cerebral Oxygen Delivery and Metabolism During Therapeutic…
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Piglet LWP475 suffered a mild injury, as indi-
cated by both its typical response to hypothermia, 
as per [13], and its Lac/NAA ratio of 0.21. The 
Q10,met and Q10,haemo values obtained by fitting are all 
above 1 indicating that decreasing temperature 
does decrease reaction rates for both haemody-
namic and metabolic reactions. In contrast, piglet 
LWP479 suffered a severe injury and exhibited an 
atypical response to hypothermia. The HbO2, HHb 
and CCO signals all produce behaviour opposite to 
that seen in piglet LWP475. Model analysis then 
showed that this is likely to be due to a breakdown 
in how the metabolic reactions responded to hypo-
thermia, with Q10,met values all within a narrow dis-
tribution well below 1, with a median value of 
0.133. Thus, for this piglet, hypothermia will 
increase metabolic reaction rate rather than 
decrease it, but haemodynamic reaction rate will 
react “typically”, reducing with temperature. A 
small time lag is seen between measured data and 
predictive posterior distribution, which may be due 
to the model reduction removing a parameter nec-

Fig. 5.4 Posterior predictive distributions for piglet 
LWP475 (a) and LWP479 (b). The posterior predictive 
distributions show good agreement between model (blue) 

and data (green) in both piglets, with the model able to 
reproduce overall large-scale behaviours

Table 5.1 Final model parameters as selected by sensi-
tivity analysis

Symbol Description
Default 
value

Q_10_
met

Temperature coefficient for 
metabolic reactions

2.23

Q_10_
haemo

Temperature coefficient for 
haemodynamic reactions

2.23

Xtot_n Normal total haemoglobin 
concentration

5.4 mM

r_n Normal blood vessel radius 0.0187 cm
r_0 Special radius in the elastic 

tension relationship
0.0126 cm

K_sigma Parameter controlling 
sensitivity of σe to vessel 
radius

10

pH_mn Normal mitochondrial pH 7.4
phi Oxygen concentration at 

half-maximal saturation
0.036 mM

a_frac_n Normal oxidised fraction 
CuA

0.67

_L0n Normal concentration of 
lactate in the cytoplasm

3.0 mM

NADpool Total mitochondrial NAD 
and NADH concentration

3.0 mM
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essary to control this behaviour. Improvement of 
the model reduction process may help with this.

Whilst it is not possible to draw clinical con-
clusions from these results yet, the different 
parameter spaces for these two piglets does 
potentially highlight issues with treating all HIE 
injuries in the same way. Findings here suggest 
that in certain circumstances the initial injury 
may impact on how the various reactions and 
processes respond to cooling and that this 
change in response may be the opposite of that 
desired. Further work will look at applying 
these methods and models to understanding data 
collected from human neonates that have suf-
fered HIE.
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