90 research outputs found

    Second chances: Investigating athletes’ experiences of talent transfer

    Get PDF
    Talent transfer initiatives seek to transfer talented, mature individuals from one sport to another. Unfortunately talent transfer initiatives seem to lack an evidence-based direction and a rigorous exploration of the mechanisms underpinning the approach. The purpose of this exploratory study was to identify the factors which successfully transferring athletes cite as facilitative of talent transfer. In contrast to the anthropometric and performance variables that underpin current talent transfer initiatives, participants identified a range of psychobehavioral and environmental factors as key to successful transfer. We argue that further research into the mechanisms of talent transfer is needed in order to provide a strong evidence base for the methodologies employed in these initiatives

    Inducible Defenses with a "Twist": Daphnia barbata Abandons Bilateral Symmetry in Response to an Ancient Predator

    Get PDF
    Predation is one of the most important drivers of natural selection. In consequence a huge variety of anti-predator defenses have evolved in prey species. Under unpredictable and temporally variable predation pressure, the evolution of phenotypically plastic defensive traits is favored. These "inducible defenses", range from changes in behavior, life history, physiology to morphology and can be found in almost all taxa from bacteria to vertebrates. An important group of model organisms in ecological, evolutionary and environmental research, water fleas of the genus Daphnia (Crustacea: Cladocera), are well known for their ability to respond to predators with an enormous variety of inducible morphological defenses. Here we report on the "twist", a body torsion, as a so far unrecognized inducible morphological defense in Daphnia, expressed by Daphnia barbata exposed to the predatory tadpole shrimp Triops cancriformis. This defense is realized by a twisted carapace with the helmet and the tail spine deviating from the body axis into opposing directions, resulting in a complete abolishment of bilateral symmetry. The twisted morphotype should considerably interfere with the feeding apparatus of the predator, contributing to the effectiveness of the array of defensive traits in D. barbata. As such this study does not only describe a completely novel inducible defense in the genus Daphnia but also presents the first report of a free living Bilateria to flexibly respond to predation risk by abandoning bilateral symmetry

    Identification and In Vivo Characterization of NvFP-7R, a Developmentally Regulated Red Fluorescent Protein of Nematostella vectensis

    Get PDF
    In recent years, the sea anemone Nematostella vectensis has emerged as a critical model organism for comparative genomics and developmental biology. Although Nematostella is a member of the anthozoan cnidarians (known for producing an abundance of diverse fluorescent proteins (FPs)), endogenous patterns of Nematostella fluorescence have not been described and putative FPs encoded by the genome have not been characterized.We described the spatiotemporal expression of endogenous red fluorescence during Nematostella development. Spatially, there are two patterns of red fluorescence, both restricted to the oral endoderm in developing polyps. One pattern is found in long fluorescent domains associated with the eight mesenteries and the other is found in short fluorescent domains situated between tentacles. Temporally, the long domains appear simultaneously at the 12-tentacle stage. In contrast, the short domains arise progressively between the 12- and 16-tentacle stage. To determine the source of the red fluorescence, we used bioinformatic approaches to identify all possible putative Nematostella FPs and a Drosophila S2 cell culture assay to validate NvFP-7R, a novel red fluorescent protein. We report that both the mRNA expression pattern and spectral signature of purified NvFP-7R closely match that of the endogenous red fluorescence. Strikingly, the red fluorescent pattern of NvFP-7R exhibits asymmetric expression along the directive axis, indicating that the nvfp-7r locus senses the positional information of the body plan. At the tissue level, NvFP-7R exhibits an unexpected subcellular localization and a complex complementary expression pattern in apposed epithelia sheets comprising each endodermal mesentery.These experiments not only identify NvFP-7R as a novel red fluorescent protein that could be employed as a research tool; they also uncover an unexpected spatio-temporal complexity of gene expression in an adult cnidarian. Perhaps most importantly, our results define Nematostella as a new model organism for understanding the biological function of fluorescent proteins in vivo

    Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development

    Get PDF
    The transcription factor COE (collier/olfactory-1/early B cell factor) is an unusual basic helix–loop–helix transcription factor as it lacks a basic domain and is maintained as a single copy gene in the genomes of all currently analysed non-vertebrate Metazoan genomes. Given the unique features of the COE gene, its proposed ancestral role in the specification of chemosensory neurons and the wealth of functional data from vertebrates and Drosophila, the evolutionary history of the COE gene can be readily investigated. We have examined the ways in which COE expression has diversified among the Metazoa by analysing its expression from representatives of four disparate invertebrate phyla: Ctenophora (Mnemiopsis leidyi); Mollusca (Haliotis asinina); Annelida (Capitella teleta and Chaetopterus) and Echinodermata (Strongylocentrotus purpuratus). In addition, we have studied COE function with knockdown experiments in S. purpuratus, which indicate that COE is likely to be involved in repressing serotonergic cell fate in the apical ganglion of dipleurula larvae. These analyses suggest that COE has played an important role in the evolution of ectodermally derived tissues (likely primarily nervous tissues) and mesodermally derived tissues. Our results provide a broad evolutionary foundation from which further studies aimed at the functional characterisation and evolution of COE can be investigated

    Gene expression throughout a vertebrate's embryogenesis

    Get PDF
    Abstract Background Describing the patterns of gene expression during embryonic development has broadened our understanding of the processes and patterns that define morphogenesis. Yet gene expression patterns have not been described throughout vertebrate embryogenesis. This study presents statistical analyses of gene expression during all 40 developmental stages in the teleost Fundulus heteroclitus using four biological replicates per stage. Results Patterns of gene expression for 7,000 genes appear to be important as they recapitulate developmental timing. Among the 45% of genes with significant expression differences between pairs of temporally adjacent stages, significant differences in gene expression vary from as few as five to more than 660. Five adjacent stages have disproportionately more significant changes in gene expression (> 200 genes) relative to other stages: four to eight and eight to sixteen cell stages, onset of circulation, pre and post-hatch, and during complete yolk absorption. The fewest differences among adjacent stages occur during gastrulation. Yet, at stage 16, (pre-mid-gastrulation) the largest number of genes has peak expression. This stage has an over representation of genes in oxidative respiration and protein expression (ribosomes, translational genes and proteases). Unexpectedly, among all ribosomal genes, both strong positive and negative correlations occur. Similar correlated patterns of expression occur among all significant genes. Conclusions These data provide statistical support for the temporal dynamics of developmental gene expression during all stages of vertebrate development

    Do teashirt family genes specify trunk identity? Insights from the single tiptop/teashirt homolog of Tribolium castaneum

    Get PDF
    The Drosophila teashirt gene acts in concert with the homeotic selector (Hox) genes to specify trunk (thorax and abdomen) identity. There has been speculation that this trunk-specifying function might be very ancient, dating back to the common ancestor of insects and vertebrates. However, other evidence suggests that the role of teashirt in trunk identity is not well conserved even within the Insecta. To address this issue, we have analyzed the function of Tc-tiotsh, the lone teashirt family member in the red flour beetle, Tribolium castaneum. Although Tc-tiotsh is important for aspects of both embryonic and imaginal development including some trunk features, we find no evidence that it acts as a trunk identity gene. We discuss this finding in the context of recent insights into the evolution and function of the Drosophila teashirt family genes

    Gene Discovery in the Threatened Elkhorn Coral: 454 Sequencing of the Acropora palmata Transcriptome

    Get PDF
    BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000). The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite considerable exposure to genotoxic stress over long life spans, and showed conservation of important physiological pathways between corals and bilaterians

    Pre-Bilaterian Origins of the Hox Cluster and the Hox Code: Evidence from the Sea Anemone, Nematostella vectensis

    Get PDF
    BACKGROUND: Hox genes were critical to many morphological innovations of bilaterian animals. However, early Hox evolution remains obscure. Phylogenetic, developmental, and genomic analyses on the cnidarian sea anemone Nematostella vectensis challenge recent claims that the Hox code is a bilaterian invention and that no “true” Hox genes exist in the phylum Cnidaria. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic analyses of 18 Hox-related genes from Nematostella identify putative Hox1, Hox2, and Hox9+ genes. Statistical comparisons among competing hypotheses bolster these findings, including an explicit consideration of the gene losses implied by alternate topologies. In situ hybridization studies of 20 Hox-related genes reveal that multiple Hox genes are expressed in distinct regions along the primary body axis, supporting the existence of a pre-bilaterian Hox code. Additionally, several Hox genes are expressed in nested domains along the secondary body axis, suggesting a role in “dorsoventral” patterning. CONCLUSIONS/SIGNIFICANCE: A cluster of anterior and posterior Hox genes, as well as ParaHox cluster of genes evolved prior to the cnidarian-bilaterian split. There is evidence to suggest that these clusters were formed from a series of tandem gene duplication events and played a role in patterning both the primary and secondary body axes in a bilaterally symmetrical common ancestor. Cnidarians and bilaterians shared a common ancestor some 570 to 700 million years ago, and as such, are derived from a common body plan. Our work reveals several conserved genetic components that are found in both of these diverse lineages. This finding is consistent with the hypothesis that a set of developmental rules established in the common ancestor of cnidarians and bilaterians is still at work today
    corecore