271 research outputs found

    Neural Basis of Dyslexia: A Comparison between Dyslexic and Nondyslexic Children Equated for Reading Ability

    Get PDF
    Adults and children with developmental dyslexia exhibit reduced parietotemporal activation in functional neuroimaging studies of phonological processing. These studies used age-matched and/or intelligence quotient-matched control groups whose reading ability and scanner task performance were often superior to that of the dyslexic group. It is unknown, therefore, whether differences in activation reflect simply poorer performance in the scanner, the underlying level of reading ability, or more specific neural correlates of dyslexia. To resolve this uncertainty, we conducted a functional magnetic resonance imaging study, with a rhyme judgment task, in which we compared dyslexic children with two control groups: age-matched children and reading-matched children (younger normal readers equated for reading ability or scanner-performance to the dyslexic children). Dyslexic children exhibited reduced activation relative to both age-matched and reading-matched children in the left parietotemporal cortex and five other regions, including the right parietotemporal cortex. The dyslexic children also exhibited reduced activation bilaterally in the parietotemporal cortex when compared with children equated for task performance during scanning. Nine of the 10 dyslexic children exhibited reduced left parietotemporal activation compared with their individually selected age-matched or reading-matched control children. Additionally, normal reading fifth graders showed more activation in the same bilateral parietotemporal regions than normal-reading third graders. These findings indicate that the activation differences seen in the dyslexic children cannot be accounted for by either current reading level or scanner task performance, but instead represent a distinct developmental atypicality in the neural systems that support learning to read. Copyright © 2006 Society for Neuroscience.published_or_final_versio

    On the role of computers in creativity-support systems

    Get PDF
    We report here on our experiences with designing computer-based creativity-support systems over several years. In particular, we present the design of three different systems incorporating different mechanisms of creativity. One of them uses an idea proposed by Rodari to stimulate imagination of the children in writing a picture-based story. The second one is aimed to model creativity in legal reasoning, and the third one uses low-level perceptual similarities to stimulate creation of novel conceptual associations in unrelated pictures.We discuss lessons learnt from these approaches, and address their implications for the question of how far creativity can be tamed by algorithmic approaches

    Calpain inhibition mediates autophagy-dependent protection against polyglutamine toxicity.

    Get PDF
    Over recent years, accumulated evidence suggests that autophagy induction is protective in animal models of a number of neurodegenerative diseases. Intense research in the field has elucidated different pathways through which autophagy can be upregulated and it is important to establish how modulation of these pathways impacts upon disease progression in vivo and therefore which, if any, may have further therapeutic relevance. In addition, it is important to understand how alterations in these target pathways may affect normal physiology when constitutively modulated over a long time period, as would be required for treatment of neurodegenerative diseases. Here we evaluate the potential protective effect of downregulation of calpains. We demonstrate, in Drosophila, that calpain knockdown protects against the aggregation and toxicity of proteins, like mutant huntingtin, in an autophagy-dependent fashion. Furthermore, we demonstrate that, overexpression of the calpain inhibitor, calpastatin, increases autophagosome levels and is protective in a mouse model of Huntington's disease, improving motor signs and delaying the onset of tremors. Importantly, long-term inhibition of calpains did not result in any overt deleterious phenotypes in mice. Thus, calpain inhibition, or activation of autophagy pathways downstream of calpains, may be suitable therapeutic targets for diseases like Huntington's disease.This is the published version of the manuscript. It is available online from NPG in Cell Death and Differentiaiton here: http://www.nature.com/cdd/journal/vaop/ncurrent/full/cdd2014151a.html

    Mitochondrial Uncoupling Inhibits p53 Mitochondrial Translocation in TPA-Challenged Skin Epidermal JB6 Cells

    Get PDF
    The tumor suppressor p53 is known to be able to trigger apoptosis in response to DNA damage, oncogene activation, and certain chemotherapeutic drugs. In addition to its transcriptional activation, a fraction of p53 translocates to mitochondria at the very early stage of apoptosis, which eventually contributes to the loss of mitochondrial membrane potential, generation of reactive oxygen species (ROS), cytochrome c release, and caspase activation. However, the mitochondrial events that affect p53 translocation are still unclear. Since mitochondrial uncoupling has been suggested to contribute to cancer development, herein, we studied whether p53 mitochondrial translocation and subsequent apoptosis were affected by mitochondrial uncoupling using chemical protonophores, and further verified the results using a siRNA approach in murine skin epidermal JB6 cells. Our results showed that mitochondrial uncoupling blocked p53 mitochondrial translocation induced by 12-O-tetradecanoylphorbol 13-acetate (TPA), a known tumor promoter to induce p53-mediated apoptosis in skin carcinogenesis. This blocking effect, in turn, led to preservation of mitochondrial functions, and eventually suppression of caspase activity and apoptosis. Moreover, uncoupling protein 2 (UCP2), a potential suppressor of ROS in mitochondria, is important for TPA-induced cell transformation in JB6 cells. UCP2 knock down cells showed enhanced p53 mitochondrial translocation, and were less prone to form colonies in soft agar after TPA treatment. Altogether, our data suggest that mitochondrial uncoupling may serve as an important regulator of p53 mitochondrial translocation and p53-mediated apoptosis during early tumor promotion. Therefore, targeting mitochondrial uncoupling may be considered as a novel treatment strategy for cancer

    SirT3 suppresses hypoxia inducible factor 1α and tumor growth by inhibiting mitochondrial ROS production

    Get PDF
    It has become increasing clear that alterations in cellular metabolism have a key role in the generation and maintenance of cancer. Some of the metabolic changes can be attributed to the activation of oncogenes or loss of tumor suppressors. Here, we show that the mitochondrial sirtuin, SirT3, acts as a tumor suppressor via its ability to suppress reactive oxygen species (ROS) and regulate hypoxia inducible factor 1α (HIF-1α). Primary mouse embryo fibroblasts (MEFs) or tumor cell lines expressing SirT3 short-hairpin RNA exhibit a greater potential to proliferate, and augmented HIF-1α protein stabilization and transcriptional activity in hypoxic conditions. SirT3 knockdown increases tumorigenesis in xenograft models, and this is abolished by giving mice the anti-oxidant N-acetyl cysteine. Moreover, overexpression of SirT3 inhibits stabilization of HIF-1α protein in hypoxia and attenuates increases in HIF-1α transcriptional activity. Critically, overexpression of SirT3 decreases tumorigenesis in xenografts, even when induction of the sirtuin occurs after tumor initiation. These data suggest that SirT3 acts to suppress the growth of tumors, at least in part through its ability to suppress ROS and HIF-1α

    Effect of TENS on pain in relation to central sensitization in patients with osteoarthritis of the knee: study protocol of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Central sensitization has recently been documented in patients with knee osteoarthritis (OAk). So far, the presence of central sensitization has not been considered as a confounding factor in studies assessing the pain inhibitory effect of tens on osteoarthritis of the knee. The purpose of this study is to explore the pain inhibitory effect of burst tens in OAk patients and to explore the prognostic value of central sensitization on the pain inhibitory effect of tens in OAk patients.</p> <p>Methods</p> <p>Patients with knee pain due to OAk will be recruited through advertisements in local media. Temporal summation, before and after a heterotopic noxious conditioning stimulation, will be measured. In addition, pain on a numeric rating score, WOMAC subscores for pain and function and global perceived effect will be assessed. Patients will be randomly allocated to one of two treatment groups (tens, sham tens). Follow-up measurements will be scheduled after a period of 6 and 12 weeks.</p> <p>Discussion</p> <p>Tens influences pain through the electrical stimulation of low-threshold A-beta cutaneous fibers. The responsiveness of central pain-signaling neurons of centrally sensitized OAk patients may be augmented to the input of these electrical stimuli. This would encompass an adverse therapy effect of tens. To increase treatment effectiveness it might be interesting to identify a subgroup of symptomatic OAk patients, i.e., non-sensitized patients, who are likely to benefit from burst tens.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01390285">NCT01390285</a></p

    β-Catenin is involved in alterations in mitochondrial activity in non-transformed intestinal epithelial and colon cancer cells

    Get PDF
    BACKGROUND: Alteration in respiratory activity and mitochondrial DNA (mtDNA) transcription seems to be an important feature of cancer cells. Leukotriene D(4) (LTD(4)) is a proinflammatory mediator implicated in the pathology of chronic inflammation and cancer. We have shown earlier that LTD(4) causes translocation of beta-catenin both to the mitochondria, in which it associates with the survival protein Bcl-2 identifying a novel role for beta-catenin in cell survival, and to the nucleus in which it activates the TCF/LEF transcription machinery. METHODS: Here we have used non-transformed intestinal epithelial Int 407 cells and Caco-2 colon cancer cells, transfected or not with wild type and mutated (S33Y) beta-catenin to analyse its effect on mitochondria activity. We have measured the ATP/ADP ratio, and transcription of the mtDNA genes ND2, ND6 and 16 s in these cells stimulated or not with LTD(4). RESULTS: We have shown for the first time that LTD(4) triggers a cellular increase in NADPH dehydrogenase activity and ATP/ADP ratio. In addition, LTD(4) significantly increased the transcription of mtDNA genes. Overexpression of wild-type beta-catenin or a constitutively active beta-catenin mutant mimicked the effect of LTD(4) on ATP/ADP ratio and mtDNA transcription. These elevations in mitochondrial activity resulted in increased reactive oxygen species levels and subsequent activations of the p65 subunit of NF-kappaB. CONCLUSIONS: The present novel data show that LTD(4), presumably through beta-catenin accumulation in the mitochondria, affects mitochondrial activity, lending further credence to the idea that inflammatory signalling pathways are intrinsically linked with potential oncogenic signals
    corecore